
Real Time Charging Database Benchmarking

Justus Bogner, Carolin Dehner, Tobias Vinçon, Ilia Petrov
Reutlingen University
Alteburgstraße 150
72762 Reutlingen

justus.bogner@gmail.com
carolin.dehner@gmail.com
tobias.vincon@gmail.com

ilia.petrov@reutlingen-university.de

ABSTRACT

Real Time Charging (RTC) applications that reside in the

telecommunications domain have the need for extremely fast

database transactions. Today’s providers rely mostly on in-

memory databases for this kind of information processing. A

flexible and modular benchmark suite specifically designed for

this domain provides a valuable framework to test the

performance of different DB candidates. Besides a data and a load

generator, the suite also includes decoupled database connectors

and use case components for convenient customization and

extension. Such easily produced test results can be used as

guidance for choosing a subset of candidates for further

tuning/testing and finally evaluating the database most suited to

the chosen use cases. This is why our benchmark suite can be of

value for choosing databases for RTC use cases.

General Terms

Measurement, Performance, Design, Reliability, Experimentation

Keywords

Telecommunications, Real Time Charging, Database

Benchmarking, Performance Testing, Application-Specific

Macro-Benchmark, Data Generator, Load Generator, Executable

Use Cases

1. INTRODUCTION
Database (DB) performance is a critical factor for companies and

institutions that rely on storing huge amounts of information and

need to process them extremely fast. For a couple of years, such

high performance scenarios are more and more implemented with

in-memory databases (IMDBs) instead of classical hard disk

databases (HDDBs). With the decreasing price of main memory,

even several terabytes of data stored in volatile RAM slowly

became nothing out of the ordinary. Today, choosing the best

database for your needs does of course not exclusively depend on

performance, but it is definitely one of the most important points.

In order to support this database selection process, we created a

flexible, modular, and reusable benchmark suite for a very

specific domain: Real Time Charging (RTC) applications for

telecommunication providers. The benchmark suite itself is the

key benefit since it is built very modular and can be connected to

different databases for further performance tests in the RTC

environment. Because telecommunication providers have very

different requirements regarding database size and the

infrastructure of the environment, this modularity is of high

importance.

The paper will first present the history and current status of

related work in the field of database benchmarking in general and

telecommunications benchmarking in particular. After that, our

distinct domain – Real Time Charging – will be explained. This

section is followed by our main contribution, namely a detailed

description of the benchmark suite that we developed for testing

DBs for RTC related scenarios. Finally, a short summary in

combination with an outlook on further usage of our work in the

field concludes this paper.

2. RELATED WORK
While benchmarking has been relevant since the very beginning

of the creation of information technology and was and is used to

measure and compare the performance of a lot of different

resources like CPUs, graphic cards, storage disk, file systems, or

operating systems, it is especially popular in the field of databases

[1]. Starting with the Wisconsin benchmark (early 1980s), which

was a single-user micro-benchmark for foundational relational

operations and really the first benchmark that received heavy

interest from database vendors [2], the database benchmarking

domain quickly evolved. Next was the Debit-Credit benchmark

that was simpler than the Wisconsin benchmark and since it was

designed for banking applications, it was also more specific [1].

Debit-Credit introduced the focus on a single metric, namely tps

(transactions per second), and also included the costs of the tested

system (costs per tps). Moreover, it was the first benchmark that

did provide very concrete specifications rather than an executable

and could therefore be implemented on any system (vendor-

neutral). From then on, database benchmarking became more and

more standardized and structured. In 1988, the Transaction

Processing Performance Council (TPC) was formed with the

purpose to introduce standardizations to performance measuring

within the OLTP domain [1]. Debit-Credit was adopted and

slightly changed into the first official TPC benchmark, TPC-A.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from

Permissions@acm.org.

iiWAS '15, December 11-13, 2015, Brussels, Belgium

© 2015 ACM. ISBN 978-1-4503-3491-4/15/12…$15.00

DOI: http://dx.doi.org/10.1145/2837185.2837258

The database benchmarking domain spread out into several

branches like micro and macro benchmarks or application,

domain, and system specific benchmarks. By now, there are

already 6 retired TPC enterprise benchmarks and 6 benchmarks

for different transaction scenarios that are currently active [3].

Common metrics are average query response time, throughput

(tps), costs, but also energy consumption. Database vendors

compete heavily for delivering the best results in the most popular

benchmarks and also specifically optimize their products for the

most important benchmark features [4]. While there are a lot of

critical areas to watch out for (e.g. fair database tuning, remaining

unbiased with industry products, or choosing the appropriate

queries and data sets [2]), developing new benchmarks, especially

application and domain specific ones, is still very popular and

important for the industry [1][5]. The telecommunications domain

is of large interest due to the requirement for extremely fast and

consistent service times. While there are quite a few whitepapers

from different companies that describe very high-level

benchmarks with (unsurprisingly) very successful results for their

own telecommunication products (e.g. Amdocs and IBM [7],

OpenCloud and HP [8], or MATRIXX Software [9]), there is a

very small number of independent publications that actually

describe detailed implementations of telco related benchmarks.

Noteworthy are Lindstroem’s benchmark for intelligent networks,

800 service and GSM user roaming [6] and Raatikainen’s control

plane telco benchmark [5]. However, for another important

telecommunication application called Real Time Charging (RTC)

there is currently no open implementation. RTC systems are

concerned with all functionality used in mobile communication

networks to control the network usage of subscribers (see chapter

3 for more information). We developed a flexible and extensible

benchmarking framework for this specific telco context that is

vendor-neutral and portable, scalable, and covering most relevant

RTC use cases while still remaining reasonably simple. Our

benchmark suite follows observed environment characteristics

similar to a TPC-C test, e.g. multiple transaction types with

different complexity and multiple connections to access the

database are used [3]. Moreover, a significant disk input and

output is generated to get a realistic testing scenario. The database

schema was implemented considering the following TPC-C

characteristic: “Databases consisting of many tables with a wide

variety of sizes, attributes, and relationships” [3]. Francis lists a

lot of different metrics that can be reasonable in the field of

telecommunications and focus also on usability aspects and

quality of service [10]. Similar to Lindstroem however [6], we

focus only on the response time in combination with the

throughput in our benchmarking framework to compare the

performance of database candidates.

3. REAL TIME CHARGING
RTC is associated with all functionality used in mobile

communication networks to control the network usage of

subscribers. As shown in the picture below, the mobile

communication network is divided into two sub networks. The

access network is the connection point for subscribers and it

includes all base stations (eNodeBs), which connect devices with

the core network. In the core network all control and

configuration work is covered.

For example, data packets are routed (via S- and PDN-Gateway)

and call control for set up and hang up of calls is exerted. The

Mobility Management Entity (MME) registers users in the

network and is the central control entity in the network

responsible for the usage charging of each user. The Home

Subscriber Server (HSS) includes the profile and subscription

data of all connected users to charge all usage in real time with the

individual contract conditions.

Figure 1. LTE Network structure

Each time a user interacts with the network by setting up a call,

sending a short message, or accessing the internet, a request is set

up. To check if the user is permitted to perform this action, his/her

contract is checked. If the contract is post-paid, the action will be

charged and established. If the subscriber uses a pre-paid contract

instead, a balance check is executed. If the balance is sufficient,

the connection will be set up, otherwise the connection is

declined. But not only the permission or rejection of connections

is possible, individual adaptations based on the contract

conditions can be performed as well. For example, it is possible to

reduce the internet speed, if specified in the subscriber´s contract.

Figure 2. Real Time Charging Process

Because all these checks are during the connection initialization

and the users get unsatisfied, if they have to wait too long until

their calls or connections are set up, this process needs to be very

fast. Therefore, Real Time Charging systems are implemented.

4. BENCHMARK ARCHITECTURE
We created a macro benchmark that is application specific (RTC

use cases) and designed for multi-user workload, i.e. it is able to

scale the number of concurrent queries as well as the size of the

data sets. Each use case focuses on a different type of load

(READ, WRITE, etc.) and is applied to several generated data

sets of increasing size. The benchmark for one use case starts with

one single parallel execution and adds 10 additional parallel

executions every level up to a certain threshold (maximum # of

parallel executions, see Table 1).

Table 1. Benchmark Data Set Scaling

Data set

size
Maximum # of parallel executions

100k 575

200k 650

400k 800

600k 950

800k 1100

A data generator creates these scaling sets and takes care of

realistic distributions and relations between the entities. A

configuration file provides a convenient way to alter some

characteristics of the generated data, e.g. the mobile phone

number prefixes and their probability or the percentage of prepaid

customers. This allows to respect the individual customer

properties in different regions or countries. The configuration

holds the average values for the attributes, which mostly follow a

Gaussian distribution with a reasonable standard deviation. By

simply adjusting the parameter “number of customers”, similar

sets for providers of different sizes can be created.

4.1 Database Schema
Since this benchmark is aimed at the RTC domain, a schema from

the telecommunications world is used. There are customers with

mobile phone contracts (either pre-paid or post-paid). A contract

is associated with a device and we also have entities for data

quotas (as well as balance quotas for pre-paid contracts) and a

quota history with charged connections. A rather volatile session

table takes care of currently active connections. We chose a

schema that has a still manageable amount of tables and attributes,

but holds enough complexity to serve as a valid representation of

the real world and therefore relates to the requirements of TPC-C

(cf. chapter 2). This data model is then used to define a set of use

cases applicable to the chosen domain (see Figure 3).

Figure 3. Benchmark Suite Database Schema

Although schema-based DBs are most relevant for the RTC

domain (for performance reasons), it is also possible to use

schema-free DBs with the benchmark framework.

4.2 Use Cases
As mentioned above, we created three different use cases around

this schema, each one aimed at a different type of load. The three

benchmark use cases result from a detailed analysis of the systems

managed by a large RTC operator. They are therefore

representative for the RTC domain and hence, there is no separate

template-based use case generator. The benchmark framework

however allows the development and embedding of further use

cases.

4.2.1 Add new customer (WRITE)
This use case models the insertion of a new customer with all

necessary additional data entities such as a contract and a device.

It is testing the write performance and covers 6 different tables (7

in the case of a pre-paid customer).

4.2.2 Charging a new session quota (MIXED)
During an ongoing connection, a fixed amount of quota is

allocated periodically to keep the connection from terminating.

This use case checks the contract type of the device that initiated

the current connection and makes sure that new quota can be

allocated. If the final quota is reached, the connection is

terminated instead. These actions result in a mixed load with

READS, UPDATES and WRITES, conditional structures, and a

coverage of up to 6 tables.

4.2.3 Fetch connection history for billing (READ)
This use case is a large READ load. It fetches all connections

from the last month for one contract in order to create a bill for

Code Block 2. Charging a new session quota use case

Code Block 1. Insert new customer use case

BEGIN();

INSERT INTO imdbstatic.Contact (ID, …) VALUES (1, …);
INSERT INTO imdbstatic.Subscriber (ID, …) VALUES(0, …);
INSERT INTO imdbstatic.Device (ID, …) VALUES(1,…);
INSERT INTO imdbstatic.DeviceIdentifier (IdentifierType, …)

VALUES(‘MSISDN’, …);
INSERT INTO imdbstatic.Subscription (ID, …) VALUES(2, …);
INSERT INTO SubscriptionQuota (ID, …)

VALUES(NextSubscriptionQuotaID, …);

IF Subscriber is Prepaid:
INSERT INTO imdbstatic.Account (ID, …) VALUES(3, …);

COMMIT();

BEGIN();

SELECT imdbstatic.Subscriber.SubscriberType,

imdbstatic.Subscription.ID, imdbstatic.Subscriber.ID
FROM imdbstatic.Subscriber, imdbstatic.Subscription,

imdbstatic.DeviceIdentifier
WHERE imdbstatic.DeviceIdentifier.Identifier = '015137193827'
AND imdbstatic.DeviceIdentifier.SubscriberID =

imdbstatic.Subscriber.ID
AND imdbstatic.Subscription.SubscriberID =

imdbstatic.DeviceIdentifier.SubscriberID

IF PrePaid
SELECT imdbstatic.Account.Balance
FROM imdbstatic.Account
WHERE imdbstatic.Account.SubscriberID = 11

IF Account.Balance >= 0.5
UPDATE imdbstatic.Account
SET Balance = (Balance - 0.5)
WHERE SubscriberId = 11

INSERT INTO imdbsession.Session (DeviceIdentifier, …)

VALUES(11, …);

ELSE
 Decline quota allocation, terminate

ELSE
UPDATE imdbstatic.SubscriptionQuota
SET QuotaBalance = (QuotaBalance - 0.5)
WHERE SubscriptionID = 11

INSERT INTO imdbsession.Session (DeviceIdentifier, …)

VALUES(11, …);

COMMIT();

the customer. While it only covers one table, it is the use case that

includes the largest amount of data.

4.3 Framework Components
Executing the previously described use cases in a short time,

requires a test suite which is configurable for several databases

and is able to submit multiple queries in parallel as shown in

Figure 4: Architecture of the Benchmark Suite. Since most

databases management systems are addressable over JDBC and it

can be conveniently used in scripts, the test suite is written in

Java. By defining a connector for each database, it is possible to

process use cases either implemented as a stored procedure

directly on the database or via a custom implementation using the

proprietary Java API. Non-JDBC connectors (e.g. for schema-free

DBs) are possible as well. However, they clearly require

additional implementation and configuration effort.

Figure 4. Architecture of the Benchmark Suite

Initially, datasets for all use cases are created by using the data

generator, whose statistical distribution is adjustable via

configuration files. CSV files for all entities described in the

schema (see Figure 3) will be created with randomized values

configurable up to a certain degree and for a chosen dataset size.

Configuration includes not only statistical distributions (e.g. to

achieve a realistic phone number prefix set), but also the cardinal

relations of connected objects (e.g. historical data of 10 calls per

day and device on average).

The data generator ensures the referential integrities of foreign

keys by generating all used primary keys and by including them

into the respective CSV file. Since all PKs except the MSISDN of

device identifiers are integers, the data generator can simply use

increments. The randomly created MSISDNs are kept in a cache

to ensure their uniqueness. Finally, the complete CSV files are

imported into the candidate DB, which can also be implemented

as a use case for the ease of test automation.

Starting the test process can either be initiated by calling the Java

executable or by using a shell script framework (see Appendix) to

run multiple use case setups sequentially. By parsing the input

parameters after the test suite is started, the benchmark

configuration including properties for the database connection and

use case execution is loaded and parsed. Use cases are primarily

performed one after the other with increasing parallelism to obtain

another characteristic – the throughput.

Another component of the test suite monitors the execution time

and workload of the database’s CPU, Memory and IO for each use

case and logs the results in CSV files. These can be used for

further evaluation that also takes resource usage into account.

4.4 Experimental Evaluation
For accuracy and elimination of outliers, each use case should be

run three times for each data set. This leads to a combination

matrix of 3 use cases, 5 data sets, and 3 consecutive runs, leading

to a total number of 45 separate tests per DB (see Table 1). In our

test run, we used 5 different DB combinations (2 commercial

products, 3 open-source products). The overall benchmarking

time amounted to about 20 days.

Important KPIs are average response time per level of parallel

executions and throughput per level of parallel executions. The

measured KPIs from all 3 consecutive runs are aggregated to a

single average per use case and data set.

The machines of the test environment are set up with four cores, 8

GB of memory, 50 GB of disk space and running Red Hat

Enterprise Linux 5 in 64 bit version. Each configuration of the

test suite is installed onto a single virtual machine, together with

the respective database management system.

5. RESULTS AND PERSPECTIVE
These days application specific benchmarks become more

important [1][5]. As the primary result of this work, the first

benchmark to measure the database performance under the special

context of RTC is defined and a Java Framework for the

realization is developed.

Real world applications can be simulated by universally specified

datasets. Using ratios for the integrated data generator, these sets

can be adjusted in information distribution and scaling, ranging

from small up to large telecommunication scenarios. Only a

subset of the wide functionality of the RTC environment is

defined as typical and most frequently executed use cases,

practicable in almost each telco application. Hereby, each use case

represent one of the categories (READ, WRITE and MIXED) a

database is usually tested on. If the need for further use cases

arises, the flexible and modular design of the benchmark

framework allows the implementation of these rapidly by creating

new use case classes or stored procedures. Similar to the use

cases, new communication protocols or even complete new

database connections can be integrated into the framework with

minimal effort.

The development of the benchmark framework took 9 person

months. The experimental setup comprises 5 different

combinations of in-memory and disk-based DBMS (2 commercial

products, 3 open-source products). Performing initial

benchmarking test runs with this setup for internal validations

took 3 additional person months. Practitioners can build on the

existing framework by re-using it and extending it, which can save

large amounts of time.

Recapitulated, the RTC benchmark fulfils the needs of current

telecommunication providers to measure their databases in

Code Block 3. Fetch connection history use case

BEGIN();

SELECT imdbstatic.SubscriptionQuotaTier.*

FROM imdbstatic.SubscriptionQuotaTier,
imdbstatic.SubscriptionQuota

WHERE imdbstatic.SubscriptionQuota.SubscriptionID = 11
AND imdbstatic.SubscriptionQuotaTier. SubscriptionQuotaID =

imdbstatic.SubscriptionQuota.ID
AND imdbstatic.SubscriptionQuotaTier.StartTime >
ADD_MONTHS(GETDATE(), -1);

COMMIT();

general. The scalable design of the characteristics allows an easy

customization to the particular environment. With the modular

design of the framework, an adaption to new use cases or

databases is possible, resulting in a mature benchmarking

framework for the RTC domain.

6. REFERENCES
[1] Gray, J. 1992. Benchmark Handbook: For Database and

Transaction Processing Systems. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

[2] Carey, M. J. BDMS Performance Evaluation: Practices,

Pitfalls, and Possibilities. 4th TPC Technology Conference

(TPCTC 2012, Istanbul, Turkey, August 27, 2012)

[3] TPC

retrieved on: 04.08.2015

http://www.tpc.org

[4] Boncz, P. TPC-H Analyzed: Hidden Messages and Lessons

Learned from an Influential Benchmark. 5th TPC

Technology Conference (TPCTC 2013, Trento, Italy, August

26, 2013)

[5] Lindholm, H. Vähäkangas, T. and Raatikainen, K. A Control

Plane Benchmark for Telecommunications Signalling

Applications

[6] Lindstroem, J. Niklander, T. Benchmark for Real-Time

Database Systems for Telecommunications. VLDB 2001

International Workshop (Rome, Italy, September 10, 2001

Proceedings)

[7] Amdocs Demonstrates Best-in-Class Benchmark Results for

220 Million Subscribers, Integrating Real-Time Charging

and Service Control Platform (SCP)

retrieved on: 04.08.2015

http://www.amdocs.com/news/pages/amdocs-demonstrates-

best-in-class-benchmark-results.aspx

[8] OpenCloud sets new performance benchmark for real-time

charging

retrieved on: 04.08.2015

http://www.opencloud.com/uncategorized/opencloud-sets-

new-performance-benchmark-for-real-time-charging/

[9] Independent Benchmark Demonstrates Revolutionary Real-

Time Performance from MATRIXX Software

retrieved on: 04.08.2015

http://www.tmcnet.com/usubmit/2010/05/18/4793619.htm

[10] Francis, J.C. Benchmarking Mobile Network QoS. System

Sciences (2003. Proceedings of the 36th Annual Hawaii

International Conference)

APPENDIX

Code Block 4. Script for the execution of specific use cases

. . .

startUseCase(){
 local useCaseName=$1
 local fileName=$2
 startMeasuring $fileName

 java -jar imdb-test-framework-0.9.jar -db $dbxml -usecase
$useCaseName.usecase.xml

 stopMeasuring
}

Database identifier
dbxml=$1.db.xml
Data set (e.g. 100k)
dataset=$2
Usecase identifier (e.g. InsertNewCustomer)
usecase=$3

If usecase identifier is undefined execute all usecases
if [-z "${usecase}"]
 then
 # Initialization
 startUseCase usecase-$dataset/create-db-schema CreateDBSchema
 startUseCase usecase-$dataset/csv-import CSVImport

 # Run usecases
 startUseCase usecase-$dataset/get-connection-history
GetConnectionHistory
 startUseCase usecase-$dataset/insert-new-customer
InsertNewCustomer
 startUseCase usecase-$dataset/update-session-quota
UpdateSessionQuota

elif ["$usecase" = "create-db-schema"]
 then
 startUseCase usecase-$dataset/create-db-schema CreateDBSchema

elif ["$usecase" = "csv-import"]
 then
 startUseCase usecase-$dataset/csv-import CSVImport

elif ["${usecase}" = "update-session-quota"]
 then
 startUseCase usecase-$dataset/update-session-quota
UpdateSessionQuota

elif ["$usecase" = "get-connection-history"]
 then
 startUseCase usecase-$dataset/get-connection-history
GetConnectionHistory

elif ["$usecase" = "insert-new-customer"]
 then
 startUseCase usecase--$dataset/insert-new-customer
InsertNewCustomer

fi

http://www.tpc.org/
http://www.amdocs.com/news/pages/amdocs-demonstrates-best-in-class-benchmark-results.aspx
http://www.amdocs.com/news/pages/amdocs-demonstrates-best-in-class-benchmark-results.aspx
http://www.opencloud.com/uncategorized/opencloud-sets-new-performance-benchmark-for-real-time-charging/
http://www.opencloud.com/uncategorized/opencloud-sets-new-performance-benchmark-for-real-time-charging/
http://www.tmcnet.com/usubmit/2010/05/18/4793619.htm

