
cIPT: Shift of Image Processing Technologies
to Column-Oriented Databases

Tobias Vinçon1,2(B), Ilia Petrov2,3, and Christian Thies3

1 Hewlett Packard Enterprise, Böblingen, Germany
tobias.vincon@hpe.com

2 Data Management Lab, Reutlingen University, Reutlingen, Germany
3 Reutlingen University, Reutlingen, Germany

{tobias.vincon,ilia.petrov,christian.thies}@reutlingen-university.de

Abstract. The amount of image data has been rising exponentially over
the last decades due to numerous trends like social networks, smart-
phones, automotive, biology, medicine and robotics. Traditionally, file
systems are used as storage. Although they are easy to use and can han-
dle large data volumes, they are suboptimal for efficient sequential image
processing due to the limitation of data organisation on single images.
Database systems and especially column-stores support more stuctured
storage and access methods on the raw data level for entiere series.

In this paper we propose definitions of various layouts for an efficient
storage of raw image data and metadata in a column store. These schemes
are designed to improve the runtime behaviour of image processing oper-
ations. We present a tool called column-store Image Processing Toolbox
(cIPT) allowing to easily combine the data layouts and operations for
different image processing scenarios.

The experimental evaluation of a classification task on a real world
image dataset indicates a performance increase of up to 15x on a column
store compared to a traditional row-store (PostgreSQL) while the space
consumption is reduced 7x. With these results cIPT provides the basis
for a future mature database feature.

1 Introduction

Industries like automotive, biology, medicine and robotics produce more media
data than ever nowadays. Trends in mobile devices and social media platforms
additionally increase the amount of image data dramatically. Furthermore, the
need to process this image data has risen up to real time applications in the last
years, driven mainly by big data analyses [3].

Especially, the uniform analysis of image sequences is very wide-spread
across emerging image processing applications for instance content based image
retrieval, pedestrian tracking in intelligent cars or cell recognition in series of
micrographs. Most traditional image processing tools use file systems, which are
suboptimal persistence layers because algorithms cannot operate sequentially on
specific data sections over all images without costly loading of every single image

c© Springer International Publishing Switzerland 2016
M. Ivanović et al. (Eds.): ADBIS 2016, CCIS 637, pp. 96–103, 2016.
DOI: 10.1007/978-3-319-44066-8 11

cIPT: Shift of Image Processing Technologies 97

entirely into memory. DBMSs can make this data access more transparent with
respect to local structures and thus offer the possibility to execute operations
more efficient and closer to the data. However, traditional row-stores cannot
efficiently handle the high volume data streams resulting from image sequences.
Modern column-stores are well-suited for the needs of big data analysis [1].

This paper proposes the column-store Image Processing Toolbox (cIPT) by
providing the ability to process image sequences on a column-oriented DBMS.
cIPT allows to use different data layouts for the image data extracted from an
input sequence. These data layouts leverage the characteristics of a column-store
with a set of basic image processing operations. This approach is illustrated by
implementing an image analysis pipeline for image classification which is the
underlying principle of the applications mentioned above.

Data comes from the Cape2Cape project [5] (a cooperation between the
German car manufacturer Volkswagen and Hewlett Packard) where a customized
production car drove from the north to the south cape in under 9 days. The vehi-
cle was equipped with a front camera configured to take high definition images
every 10 s. The goal is to analyse the images in near-time, to extract information
about the weather condition at the respective location and to correlate them
with global weather forecasts. The result is: high volume image data, the need
for optimal persistence and acceleration of image processing operations. The
images have to be classified with respect to typical weather conditions.

The required image analysis pipeline is adapted to characteristics of the
column-oriented database where the first version of cIPT includes: an image
load utility, data layout converters, neighbourhood access functionality, extrac-
tion and comparison of histogram data as well as support for different distance
metrics.

In this sense, cIPT provides a basic toolkit functionality for building image
processing applications based on columnwise data access. Further contributions
of this paper are the implementation of cIPT within a commercial column-store.
The performance is evaluated on the real Cape2Cape image data set, which
amounts to 183GB and comprises to approx. 70000 images. The experimen-
tal evaluation compares cIPT on a column-store against a traditional row-store
(PostgreSQL).

The rest of this paper is organized as follows. The next Section presents
the related work. The architecture of cIPT and the different data layouts as
well as the definition of the operations is described in Sect. 3. The experimental
evaluation is presented in Sect. 4. We summarise our results and conclusions in
Sect. 5.

2 Related Work

Since images are not only analysed individually but are rather considered as a
source of observation data, their processing finds increasing application in many
industrial areas [2,7].

The shift of the persistence layer of media storage applications from a con-
ventional file storage to a relational database began in the early 90 s with IBM’s

98 T. Vinçon et al.

QBIC project [9]. It provides an automatic feature extraction of loaded images
and a similarity search on their basis. The runtime of utilized image processing
algorithms is improved significantly by placing them in the DBMS. By storing
only the extracted features like histograms, QBIC applications are able to search
images within large collections but cannot efficiently perform repeating feature
calculations with varying settings.

Recent research in the area of DBMS proves that column-oriented data-
bases outperform traditional row-stores when handling data-intensive work-
loads as demonstrated by C-Store (nowadays Vertica) [8,11]. Efficiently utilised
techniques like data compression, encoding, late materialisation, main-memory
processing and support for parallelisation characterise the architecture of
column-stores. Modern column-stores are able to handle mixed loads and update-
intensive operations while performing complex analytical queries by applying
various optimizations (e.g. the distinction between read- and write-optimised
stores in Vertica or delta stores in other stores, etc.). MonetDB is a widely used
open-source column-store. [6] illustrates that processing approximately 4 TB of
image data within the Sloan Sky Server project, MonetDB has lower response
times than a commercial row-store (MS SQL Server) for almost all queries.

Due to their characteristics, column-stores are to process high volume image
sequence data. Under cIPT we purpose an approach for a basic toolset of data
layouts and operations as basis for image processing and detection algorithms.
cIPT is optimised for column-oriented DBMSs and it has the potential for a
major database feature in the future.

3 Architecture of cIPT

The column-store Image Processing Toolbox (cIPT) is a generic set of data
layouts and algorithms for the purpose of image processing on column-oriented
databases. Although existing functionality focuses on the comparison of images
by calculating similarities in their colour values, further more general research
questions on image processing on column stores can be answered. Moreover,
cIPT has a modular and extensible design.

Features e.g. colour histograms, are derived from raw pixel data for instance
for similarity search [2]. This toolbox currently uses RGB colour values and
their average greyscale. The distribution of these values over all images’ pixels
is represented by histograms. If the application needs to extract a specific part
of an image, cIPT will be able to filter the raw data very fast.

Usually, image processing algorithms behave in a common manner, based on a
general workflow. The following enumeration sketches its steps, data interaction
and its utilisation within the cIPT.

1. Load The load operation of cIPT extracts the RGB colour values of each
pixel using an integrated C++ image processing API. If necessary, further
information like the greyscale is calculated on the fly. The entire data is
represented as vectors in the Tables (rgb), (rgbgrey) or (grey). This complete
process is covered in a special module called User Defined Load (UDL).

cIPT: Shift of Image Processing Technologies 99

2. Convert (optional) The conversion of image data from one relation to
another is an optional operation that requires further calculations in special
cases. Several conversion operations are designed within cIPT.

3. Filter (optional) Filtering is yet another optional operation within cIPT.
It takes an image data table as input and extracts image data within certain
shapes (e.g. rectangles, circles, etc.). The result has the input format, allowing
pipelining.

4. Calculate Histogram The calculation of histograms is influenced by several
execution parameters. Using minimum, maximum and the number of bins
the detail degree is adjustable. These histograms are persisted and reused in
further processing steps.

5. Compare The similarity of histograms can be calculated in several ways.
For instance, the distance metric can weight big divergences much more than
small ones or conversely. There are several similarity metrics available in cIPT
(manhatten, euclidean, etc.).

Fig. 1. General overview of relations and operations within the cIPT

Possible interactions within cIPT are sketched in Fig. 1. cIPT includes Image
Tables as raw data source and Histogram Tables as storage for calculated
features. Both types of relations are discussed in detail in Sect. 3.1.

3.1 Data Schema Layout

The cIPT schema comprises two types of relations. Firstly, the image table stores
images raw data, more precisely the colour representations rgb, rgbgrey and grey.
Secondly, the histogram table stores the calculated histogram data including
their properties. Tuples of both relations can be arranged in a horizontal, vertical
or in partitioned manner causing performance differences. Although a partitioned
layout might be efficient in some cases where queries only access data of one
partitioned table as shown in [10], the cIPT usually accesses either the complete
data of an image or an undefined portion of it. Therefore, partitioned layouts do
not suit cIPT operations.

100 T. Vinçon et al.

In addition to the payload, each table reserves space for an unique identi-
fier and further metadata as shown exemplarily for the vertical rgbgrey layout
in Table 11. Unfortunately, the commercial column store we used for the per-
formance evaluation is limited to a maximum of 1600 columns which is the
reason an unpartitioned-horizontal layout is partially possible. If implemented,
one image is represented by a single tuple comprising columns for each pixel.
Because of the limitation, only images with resolution of smaller than 40× 60
pixels can be stored which is obviously not suited for modern applications. How-
ever, histogram data can be arranged both vertically and horizontally. The size
of cIPT’s histograms depends primarily on the colour depth. 256 containers are
sufficient to store images with 8 bit colour depth. In addition, characteristics
like the colour channel, the number of bins, minimum and maximum colour val-
ues are stored. An example of the vertical arrangement is shown in Table 2. In
the case of a horizontal arrangement, bins are no longer represented as a set of
tuples but rather as different columns (cf. Table 3). One obvious advantage of
the horizontal layout over the vertical is the reduced redundancy.

Table 1. Schema of RGB Grey
imageid x y red green blue grey

. .

Table 2. Vertical histogram schema
id chan. bin# min max bin freq

. 256 0 . . .

. 256

. 256 255 . . .

Table 3. Horizontal histogram schema
id chan. bin# min max bin 0 . . . bin 255

. .

Table 4. Operation implementations
Operation Column Store pgSQL

Load (rgb) UDF -

Load (rgbgrey) UDF -

Load (grey) UDF -

Convert (rgb to rgbgrey) UDF/SQL -

Convert (rgb to grey) UDF/SQL -

Filter rectangle SQL SQL

Filter circle SQL SQL

Calc. histogram v UDF/SQL SQL

Calc. histogram h UDF/SQL SQL

Average histogram v SQL SQL

Average histogram h SQL SQL

Euclidean histogram v SQL SQL

Euclidean histogram h SQL SQL

Manhattan histogram v SQL SQL

Manhattan histogram h SQL SQL

3.2 Operation Definition

Processing images requires a set of operations as presented in the basic cIPT
architecture. In an application, histograms might be compared to each other or
to a previously created average histogram. Operations for these kinds of work-
flows are provided within the cIPT. They are implemented in either C++ and
exposed to DBMS as User Defined Functions (UDF) or as SQL statements.
Table 4 presents the existing functionality of cIPT for the commercial column-
store and PostgreSQL. The parameters of UDFs and SQL implementations are
equal. Their performance is evaluated in the following Sect. 4.

4 Experimental Evaluation

The evaluation of the cIPT is based on multiple defined test scenarios. Each of
them is executed on the same system with same original dataset of 100 images
1 Similar layouts exist for the rgb and grey relation.

cIPT: Shift of Image Processing Technologies 101

Fig. 2. Execution times of conversions

Fig. 3. Execution times of different ori-
ented histogram calculations

Fig. 4. Filtering on different databases

Fig. 5. Space consumption of histograms

from the Cape2Cape challenge. A few of the most interesting results are listed
below.

Is the compression factor of a column store equally effective as the
one of a row store? To test this research question the original data set is
loaded into the column store and PostgreSQL database. After the execution the
space consumption of all relations are reported. Comparing these measurements
clearly shows that the space consumption in the row store is dramatically worse.
This is because PostgreSQL requires, even though no index is defined, space for
tuple and page header. In addition it reserves about 10 % to 20 % of each page’s
available space to increase the runtime of updates at a later time.

Is the calculation of missing information more reasonable during the
initial load or with a further processing step, utilized either with
an UDF or via SQL? Additional information can be calculated on the fly
throughout the load- or a further processing-step. This experiment measures
representative the execution times of UDFs and SQLs calculating the missing
grey layer and compares these with a full load of the rgbgrey representation.
Figure 2 demonstrates that a SQL implementation is with a factor of 0,42 to
0,51 dramatically faster than the UDFs explainable by the closer operation of
SQL within the database’s layout. However, UDFs ability to express complex
custom implementation is not negligible. Regarding the postponed calculation
of information at all, the clear suggestion to compute as much information as
possible during the load can be provided. Every further processing step has to
read the entire data. Yet, the load operation has this data present as well during
its execution and avoids unnecessary reads.

102 T. Vinçon et al.

Which is the fastest filtering option on both databases? Different fil-
ter operations are investigated within this test scenario. Therefore the original
dataset provides the base data on which rectangles and circles are extracted in
various sizes by SQL implementations on the column and the row store. Figure 4
presents the resulting execution times of every filter operation. Obviously recog-
nisable is the significant difference between the both database types. The column
store takes only up to 10 % of the time the row-oriented database consumes. This
clear advantage might scale with increasing data. Moreover, filtering less com-
plex shapes like rectangles improves the run time of these operations as well.
The correlation between execution time and filtered size is less a influence factor
and can be broken down to increased data transfer.

Which database extracts features more efficiently, either with a UDF
or SQL? This test scenario measures the duration of cIPT’s feature extraction
operation on both database types. Therefore a UDF and SQL implementation
creates vertical and horizontal histograms of the original dataset’s images. In
Fig. 3 the constant duration of UDFs with 4–9 minutes is recognisable. The
results of the SQL implementation are very wide spread. After analysing the
biggest outlier with more than 300 min reveals that the multiple DECODE state-
ments are highly inefficient. Using a UDF to transpose the result of a vertical
histogram operation as a work-around decreases the execution time dramatically.
The remaining measurements conclude that the column-store performs better on
creating histograms both with SQL and UDFs.

What is the space consumption with different histogram orientation
types on a row and a column-store? The last test scenario analysis the space
consumption of histograms with different orientations and image areas as input.
Figure 5 depicts the measurements for every type on both database types. The
correlation between the input size and space consumption can be explained by
the implementation. Since the probability that a bin becomes assigned decreases
with the shrinking image area, the amount of unassigned bins increases. These
bins can either be compressed very efficiently as their value is 0 or there are
non-existing e.g. vertical layout. While the commercial column-store profits by
increasing the compression rate, PostgreSQL with its fixed size per cell is lim-
ited to the 120 KB in space consumption. The most efficient combination is as
expected the horizontal layout on the column-store because the layout adapts the
characteristics of the column-store and can compress the data to tiny 33–37 KB.

5 Conclusion

The development of the cIPT yield a first prototype of an image processing fea-
ture for column oriented databases. Evaluating the included different-oriented
data layouts on PostgreSQL as a row-store and a commercial column-store
reveals the advantages and disadvantages of each. Furthermore, the much better
compression of the column-store is clearly visible in both, the loaded image data
and calculated features.

cIPT: Shift of Image Processing Technologies 103

Furthermore, experiments with the cIPT’s operations analyse the differences
between implantations of proprietary UDFs and queries using SQL. UDFs are
constructed for very flexible use cases and complex calculation which could not
be put into practise via SQL. Especially the loading process of the cIPT is
realised with a special UDL, implementing several open-source C++ libraries
for image processing. However, queries in SQL are significantly faster since they
operate much closer on the database system and are efficiently restructured by
the database’s build-in query optimizer.
Using cIPT for a real world scenario, classifying recorded images during a road
trip from the north to the south cape by a mounted camera shows one possible
application.

References

1. Abadi et al.: Column-oriented database systems. VLDB, August 2009
2. Datta, R., et al.: Ideas, influences, and trends of the new age. ACM Comput. Surv.

40(2), 5:1–5:60 (2008)
3. Deligiannidis, L., Arabnia, H.: Emerging Trends in Image Processing, Computer

Vision and Pattern Recognition. Emerging Trends in Computer Science and
Applied Computing. Elsevier Science (2014)

4. Deselaers, T.: Features of image retrieval, December 2003
5. HP. Cape2cape. http://www8.hp.com/uk/en/campaigns/cape2cape/overview.

html
6. Ivanova, M., et al.: Monetdb/sql meets skyserver: the challenges of a scientific

database. In: Proceedings of the SSBDM (2007)
7. Johansson, B.: A survey on: Contents based search in image databases. Survey,

Department of Electrical Engineering, Linköping University 08 (2000)
8. Lamb, A., et al.: The vertica analytic database: C-store 7 years later. Proc. VLDB

Endow. 5(12), 1790–1801 (2012)
9. Niblack et al.: querying images by content, using color, texture, and shape (1993)

10. Sidirourgos, L., et al.: Column-store support for rdf data management: Not all
swans are white. Proc. VLDB Endow. 1(2), 1553–1563 (2008)

11. Stonebraker, M., et al.: C-store: A column-oriented dbms. In: Proceedings of the
VLDB (2005)

http://www8.hp.com/uk/en/campaigns/cape2cape/overview.html
http://www8.hp.com/uk/en/campaigns/cape2cape/overview.html

	cIPT: Shift of Image Processing Technologies to Column-Oriented Databases
	1 Introduction
	2 Related Work
	3 Architecture of cIPT
	3.1 Data Schema Layout
	3.2 Operation Definition

	4 Experimental Evaluation
	5 Conclusion
	References

