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Abstract: Rapidly growing data volumes push today’s analytical systems close to the feasible pro-
cessing limit. Furthermore, performing near-time precise analytics and knowledge extraction be-
comes trend in social media, intelligent cars or business analysis. Evaluation involves complex anal-
yses of larger, more detailed datasets, which consumes more time than enterprises can invest.
Massive parallelism, is one possible solution to reduce the computational time of analytical algo-
rithms, by utilising many-core CPUs or by distributing the entire system over multiple compute
nodes. However, data transfer becomes a significant bottleneck since it blocks system resources
moving data-to-code. Technological advances allow to economically place compute units close to
storage and perform data processing operations close to data, minimising data transfers and increas-
ing scalability. Hence the principle of Near Data Processing (NDP) and the shift towards code-fo-
data. In the present paper we claim that the development of NDP-system architctures becomes an
inevitable task in the future. Especially, analytical DBMS like HPE Vertica have multiple points of
impact with major advantages which are presented within this paper.

1 Introduction

The aggregate worldwide data volume grows exponentially. Mobile phones, social media
and intelligent cars persist more data than ever nowadays with rapidly increasing size.
Built-in sensors and cameras have tremendously higher resolutions and recording speeds
will further enlarge the data volume to around 35ZByte in 2020 (CSC [Co12]). New kinds
of DBMSs were developed to handle this enormous amount of information more efficiently
[Foll]. They exhibit architecture, data structures and access patterns suitable for analytic
algorithms. In addition, significant effort is put into the research of in-memory solutions by
database vendors to provide near-time or real-time evaluations. Nevertheless, even present-
day data volumes can only be processed with highly scalable databases within distributed
data centres involving latest hardware.

While data volumes are growing exponentially, improvements in algorithmic complexity
remain painfully slow. In other words, increasing data volumes yield larger N, yet with
typical algorithmic complexities of O(N -log(N)), O(N?) or even much worse, reasonable
response times become less feasible.

Consider the following example: a small hosting company is managing 6000 hosted sys-
tems. To ensure optimal SLA compliance and resource utilisation all of them need to
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be considered, yet due to high analytics complexity and large data volumes the admin-
istrators target merly 600 of them. The systems monitoring infrastructure logs 25 pa-
rameters per system such as disk, CPU or network utilisation. The average size of a
log entry is between 64 bytes and 4K on average 500 bytes. The reporting infrastruc-
ture can provide average data samples (per parameter per system) in different frequen-
cies: sample per year, month, working day, day, hour, minute down to second. Hence
N € (200,1600,96000,5,760,000). The yearly data volume is 39 TB (sample/second) or
1TB (sample/min). Computing the co-variance is a simple way to estimate the similarity of
one parameter on two systems; its computational complexity is O(N). For Z systems; the

complexity increases to O(ZZTN) Assume 600 systems, 25 parameters/system and minute
averages (Z = 600-25 = 15000, N = 96000) and it would require a machine with 10 Tflops
(floating point operations per second). This requires approx. 400 CPU cores to compute
the co-variance matrix within a second. Assuming a storage system that can read the raw
per minute data at 2 GB/s it will take approx 8.5 minutes to transport the data to the CPUs.
In Big Data environments both computational complexity and data transfers play a signif-
icant role.

Many modern systems tackle this issue with two methods: (a) massive parallelism; and
(b) scalability. Ideally, these are balanced systems (Amdahl’s balanced systems law) ex-
hibiting shared-nothing architectures. In essence, this implies partitioning N data entries
into P partitions and distributing data onto P Nodes, while introducing some degree re-
dundancy R (so now each node contains P - R partitions) and performing computation with
unchanged complexity in parallel on each node.

Unfortunately, these solutions suffer the dark side of data transfers. Whenever data is
transported from an I/O device to the computing unit time elapse, energy is wasted and,
even worse, computational resources are blocked. Consequently, under the data-to-code
principle, system resources cannot be efficiently utilised. For the above example this means
each node performs O( 22'12\'/ P ). Yet, since data cannot be perfectly distributed for all work-
loads, the data transfers still amount to R- P on each node (when no inter-node data
transfers take place). Assuming 10 nodes and R = 2 , for above example this results in
ITB xR/10 or approx. 200GB/node. Hence each node will complete computation within
a second, yet the data transfer will take 10 seconds assuming 2GB/s storage.

Modern technological advances allow to economically place compute units close to stor-
age and perform data processing operations close to data, minimising data transfers and
increasing scalability. For instance, high-performance enterprise storage systems collocate
Flash storage and FPGA or GPU compute units[Bal4, HYM15]. Prototypes demonstrate
a performance increase of 30x or more, if certain data processing operations are decou-
pled, pushed down and evaluated close or within the storage. Such architectures combine
the code-to-data principle with Near Data Processing (NDP). Although NDP approaches
were proposed in the 70s, only now the production of such devices became economical
and represents an emerging trend. Efficiently utilising such requires a complete redesign
of DBMS data structures and interactions.

This paper purposes NDP’s scopes of applications, especially for the column-oriented
DBMS HPE Vertica as one popular representative of analytical databases. Besides this,
NDP might also have significant impact on the performance of further compute-intensive
system types e.g. scientific databases, key-value stores and statistical packages. Current
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work in the NDP space is presented and own points of impact on column-stores (HPE Ver-
tica) are identified. The emerging visions and their implementation can be used for future
evaluations.

2 Related Work

Beginning in the early 70s, researchers tried to place processing units close to storage
devices since they realised that data transfer consumes time and resources, leading to
a bottleneck of data-intensive workloads. In 1969, William Kautz already presented his
CLIM array[Ka69] which automatically keeps its persisted data in order. One year later,
Harold Stone’s logic-in-memory computer[St70] appears to have processing capabilities
for systems while it is only a logic-in-memory array performing high-speed buffering of
the CPU. Producing these memory arrays with computing units was uneconomically till to-
day. Great progress in the research of 3D stacking [HYM15] and FPGA enable to produce
memory chips associating logical components with low costs. Realising these technology,
3D-stacked nanostores are going to integrate computing with non-volatile memory and
network interfaces e.g. Hewlett Packard Enterprise’s Memristor [Rall].

Sparking the interest of researchers again, a complete workshop was dedicated to the NDP
topic in 2014 including work about reasons of its revival and current research results of
companies [Bal4]. In 2016, another collection of papers about NDP’s areas of application
are published defining several services [Fal6]. E.g. the machine learning system DaDian-
Nao used for visual recognition within neural networks, the active memory cube leverag-
ing 3D memory stacks by transforming stored data through customised interpretation or
the memristive dot-product engine enabling matrix vector multiplication on memory ar-
rays. Achieving 16x performance and energy advantages, Mingyu Gao et. al present hard-
ware and software for an NDP architecture able to perform MapReduce, graph processing
and deep neural networks analytical use cases [GAK15]. Another concrete application for
databases is JAFAR [Xi15], a NDP accelerator which is able to push selects directly to the
memory in modern column-stores achieving a 9x performance increase.

However, the implementation of NDP capabilities within databases is considered sparely.
Especially within column-stores like HPE Vertica which are best-of-breed for analytical
use cases the effects might be tremendous. Points with strong impact are presented in the
following Section.

3 NDP’s Points of Impact within Analytical DBMSs

Most modern DBMS are similarly structured including a query processor, transaction man-
ager, buffer manager and disk storage. Reusable data structures like hash or bitmap indices
and B*-trees are commonly utilised to efficiently support the database. However, both,
components and common data structures of DBMSs must be rethought to benefit from
NDP. This includes pushing database operations down to NDP storage to reduce the data
transfer dramatically [Xil5]. The following list categorise the most decisive points NDP
can support the DBMSs, in particular the column-oriented database HPE Vertica.
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[1. Data Storage] Data storage designs are located most closely to the actual I/O device.
Including page formates and data structures like linked lists or directories, their defini-
tion has to be known by the NDP’s processing module to efficiently access data. Special
attention must be paid to the locality of data since the compute units only operate on per-
sisted data of the associated memory dies. Efficient data distribution over several NDP
nodes leverages complex calculations and increases parallelism. Compression and encod-
ing are implemented techniques to reduce space consumption. Within HPE Vertica these
are highly important to shrink the increased redundancy caused by its multiple possible
projections. Therefore, NDP must be able to operate on, send, and receive compressed
data. Encoding should only be applied to data transfers if and only if the encoded data
is less space consuming. Concepts of bandwidth consumption might support the develop-
ment as their goal is the data transfer reduction. Principles like buffer replacement policies
will probably have less impact. Solely, a cache for intermediate results or frequent exe-
cuted operations must be managed.

[2. Query Evaluation] Evaluating and executing entire or parts of queries is highly proba-
ble to be handled by NDP’s computing units. Selections, for example, can be pushed down
to pre-fetch data for later analytical calculations, as JAFAR does. Further operations could
be implemented similarly supporting most of the relational operators of a database. Within
HPE Vertica these might be the selection, mask, projection, aggregation and bitstring op-
erations since they reduce data transfer. Remaining operations like decompress, concat,
permute and join may produce result sets larger than the input data and are therefore suit-
able under controlled conditions. Internal operations of HPE Vertica’s Tuple Mover can be
optimised by NDP. Mergeout and Moveout are restructuring the internal data containers
or move data from its ROS to WOS?. However, in any case special architectural designs
of the database like the partitioning, segmentation and late materialisation of HPE Vertica
must be respected.

[3. Security] Securing data is often realised among other things with encryption. Since en-
cryption algorithms are characterised by high CPU workloads, this is another improvement
candidate of NDP.

4 Conclusions

NDP advantages impact data-centric systems considerably. By reducing data transfer, op-
erations of data-intensive applications like databases accelerate and their parallelism is
increased significantly. Especially column-oriented DBMS, best-suited for analytical use
cases, take advantage of this principle. Giving the list of NDP’s points of impacts, this
paper presents how HPE Vertica’s performance can be further increased in the future.
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