In-Place Appends for Real:
DBMS Overwrites on Flash without Erase

Sergey Hardock
Databases and Distributed
Systems Group
TU-Darmstadt, Germany
hardock@dvs.tu-
darmstadt.de

llia Petrov
Data Management Lab
Reutlingen University,
Germany
ilia.petrov@reutlingen-
university.de

Robert Gottstein
Databases and Distributed
Systems Group
TU-Darmstadt, Germany
gottstein@dvs.tu-
darmstadt.de

Alejandro Buchmann
Databases and Distributed
Systems Group
TU-Darmstadt, Germany
buchmann@dvs.tu-
darmstadt.de

ABSTRACT

In the present paper we demonstrate a novel approach to handling
small updates on Flash called In-Place Appends (IPA). It allows the
DBMS to revisit the traditional write behavior on Flash. Instead of
writing whole database pages upon an update in an out-of-place
manner on Flash, we transform those small updates into update
deltas and append them to a reserved area on the very same physi-
cal Flash page. In doing so we utilize the commonly ignored fact,
that under certain conditions Flash memories can support in-place
updates to Flash pages without a preceding erase operation.

The approach was implemented under Shore-MT and evaluated
on real hardware. Under standard update-intensive workloads we
observed 67% less page invalidations resulting in 80% lower garbage
collection overhead, which yields a 45% increase in transactional
throughput, while doubling Flash longevity at the same time. The
IPA outperforms In-Page Logging (IPL) by more than 50%.

We showcase a Shore-MT based prototype of the above approach,
operating on real Flash hardware — the OpenSSD Flash research
platform. During the demonstration we allow the users to inter-
act with the system and gain hands-on experience of its perfor-
mance under different demonstration scenarios. These involve var-
ious workloads such as TPC-B, TPC-C or TATP.

1. INTRODUCTION

A well-known property of Flash memory is the erase-before-
overwrite principle. In order to update the content of a certain
Flash page, the corresponding Flash block must be erased first and
all valid pages must be written back. Since this results in huge I/O
latencies and rapid wear-out, all modern SSDs utilize some vari-
ant of an out-of-place update strategy. The updated Flash pages

©2017, Copyright is with the authors. Published in Proc. 20th Inter-
national Conference on Extending Database Technology (EDBT), March
21-24, 2017 - Venice, Italy: ISBN 978-3-89318-073-8, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

_ [_Page: 4711 ‘F | XK X OO O
s < X TN IR NXiXK OO0
£C Tx [: :
28 = EEI:*] = L 1 2% KX X OO0
Ta .) 1-15 Pages written &
E 2 | Update size thle DB page File System, 1415 Pag?as invalidated
10 Bytes written: 8KB SSD GC, ... on Flash
; =]
o ® write_delta()
§ g \ 51> @ :’>
gga ==
£ <°' Update size Delta-Record 100 \;Bvﬁteesnt{gr'\:sl;ir;ed &
10 Bytes 100 Bytes

No Pages invalidated

Figure 1: Write-amplification: traditional vs IPA.

are always written to a new physical location, while the old pages
are simply invalidated and the occupied space eventually gets re-
claimed by the garbage collection (GC). Although, this allows post-
poning expensive erases and page migrations and executing them in
the background, the on-device write-amplification produced by the
GC is a major performance bottleneck of modern Flash SSDs [4].
Another source of the write-amplification in traditional DBMSs are
the write behavior and 1/O granularity. Regardless of the size of
the updated information on a database page, the whole page is writ-
ten out to stable storage (Figure 1). Our analysis of the standard
OLTP benchmarks (TPC-B/-C and TATP), as well as social net-
work workload based on LinkBench has shown that in more than
70% of evicted dirty 8KB-pages, less than 100 bytes of net data is
modified. Thus, for 100 modified bytes in total the DBMS writes
out the whole 8KB database pages. This results in the DBMS write-
amplification (ratio of written and actually changed bytes) of about
80x. The file system underneath can further increase this value [9].

To handle both kinds of write-amplification on Flash we pro-
posed an approach called In-Place Appends (IPA) [5]. Its basic
idea is to transform small in-place updates performed by DBMS
transactions into delta-records upon page eviction. Furthermore,
those delta-records are appended to a reserved area on the very
same physical Flash pages along with the original content. In
doing so we utilize the commonly ignored fact that under certain
conditions physical Flash pages can be updated in-place without a

preceding erase operation. By relaxing this erase-before-overwrite
principle we can significantly reduce the number of page invali-
dations and out-of-place updates. Furthermore we reduce the GC
overhead (page migrations and erase operations) and achieve lower
I/O latencies. Additionally, the DBMS write-amplification is re-
duced by a newly defined command write_delta, which allows the
DBMS to write out only the delta-records instead of whole pages.

The IPA [5] was implemented in Shore-MT. Although the IPA
is well applicable to traditional black-box SSD architectures, we
have implemented it as an extension of open NoFTL architecture
[6], due to the clear performance advantages of the latter. The
NSM page layout was accordingly modified to “accommodate” the
delta-record area, while buffer and storage management took the
responsibility for creating and applying of delta-records for page
reconstruction. The use of NoFTL regions [7] allows applying IPA
selectively, only to certain database objects that are dominated by
small-sized updates. The evaluation is performed on the OpenSSD
Jasmine hardware: a research SSD platform with programmable
controller and MLC Flash modules. Throughout the experiments
under standard OLTP workloads (TPC-C, TPC-B and TATP) we
observed up to 45% improvement of transactional throughput by
performing up to 80% less page migrations and erase operations
as compared to the traditional approach. Besides the clear perfor-
mance advantages, the reduction of GC overhead results in dou-
bling the longevity of Flash SSD.

In-Page Logging [8] is a well-known approach and the closest
competitor of IPA. A major difference to IPA is the way the delta-
records (or update logs in IPL) are persisted. IPL writes out the up-
date logs either upon the page eviction or fullness of in-memory log
buffer. The logs are written to the separate, reserved Flash pages on
the same Flash block the original data is. Thus, to reconstruct the
up-to-date version of the database page multiple Flash pages must
be read (Flash page(s) with the original data and the one or more
Flash pages with update logs). Under modern OLTP workloads
with 70% to 90% reads, doubling the read load causes significant
performance bottlenecks. In contrast, IPA does not produce any
additional read overhead, since delta-records are co-located with
the original content on the same Flash page. Furthermore, IPA
performs 23% to 62% less writes and 29% to 74% less erases as
compared to IPL on a range of OLTP workloads.'

2. REVISITING ERASE-BEFORE-
OVERWRITE PRINCIPLE

The elementary unit of Flash memory is a single Flash cell - a
floating gate (or a charge trap in 3D NAND). The cells of each
Flash block are connected in the form of a lattice (see Figure 2),
where rows are known as wordlines and columns as bitlines. Cells
of each wordline build one (SLC) or several (MLC) physical Flash
pages. This physical layout of NAND Flash is optimized for the
fast access to the whole Flash pages, since writing and reading is
done on per wordline basis.

It is worth, however, to look deeper into the write process on the
Flash. To program a Flash page, at first, the corresponding word-
line (e.g. WL30 on the Figure 2) is selected by applying a high
voltage (e.g. 20V) to it. Then, depending on the value of each
bit of data being programmed, the voltages on the corresponding
bitlines are selected respectively. Thus, for instance, by applying
the VCC voltage to a bitline, the corresponding cell on selected
wordline is left unprogrammed, i.e. no charge is “inserted” into

"The IPL versus IPA comparison was done by using the original
IPL simulator and the Flash memory configuration from [8] on
traces recorded from running TPC-B/-C and TATP benchmarks.

vee 5 5 5 5 ssL
1ov H— Hg H— Hg WL31
av [y e =
Selected Paﬂ ’J ’_[Programmeéd cells
10V s | s PN o WLO
sl |
ov | | } 5 ‘ - GsL
ﬁ ﬁ _‘ 2 }
°ra 3 — SL
\.___ISPP Loops___
BLO BL1 BL2 BL127

Figure 2: Organization of SLC NAND Flash memory and ISPP.

this cell, while by applying OV voltage the corresponding cell will
be programmed to a certain charge. Further, the programming of
each particular cell is done in multiple steps. This technique is ap-
plied by all modern Flash SSDs and is known as Incremental Step
Pulse Programming (ISPP) [3]. The charge of programmed cells is
increased incrementally in small “portions”, while after each pro-
gramming iteration the cell is sensed (read) to check if the desired
charge level is achieved. It is important to note, that to increase
the charge of any individual cell no foregoing erase operation is re-
quired. Only if the charge level needs to be decreased - the whole
corresponding Flash block must be erased (i.e. all cells are reseted).
The probability that a random update on a Flash page results only
in increase of the charge levels of corresponding cells” is negligi-
bly small. Therefore, in the common case the updates can not be
performed in-place (erase-before-overwrite principle).

But what if an update on a Flash page is performed in the form
of an append? Assume, for instance, the 8KB Flash page is pro-
grammed initially with only 6KB data. In this case, the cells that
correspond to the remaining 2KB are left unprogrammed. Now,
the original 6KB of data are augmented with the 2KB of new data.
This new version of the page (original data & append) can actu-
ally be written (programmed) in-place, i.e. by “overwriting” the
append area of the original Flash page without foregoing erase op-
eration. This is possible because all newly programmed cells only
increase their charge. The existing charge within the cells storing
the original data is left unchanged during the overwrite.

3. BRIEF OVERVIEW OF IN-PLACE APPENDS

The main idea is to transform small-size updates on DB pages
into delta-records upon page eviction from the buffer pool. The
delta records are then appended to the reserved space on a page,
so-called delta-record area, while the original content of the page
is left unchanged. By doing so, the database page can be written to
the very same physical Flash address without page invalidation or
foregoing erase operation. The major “points of attack” by the im-
plementation of the approach are: (i) delta-record format, flexible
configuration of IPA and database page layout; (ii) DBMS oper-
ations - fetching, modification and eviction; (iii) error-correction
codes (ECC) on Flash; (iv) program interferences on Flash.

Delta-record, NxM scheme and database page layout.
Delta-records store information needed to reconstruct the up-to-
date version of the page. Updates are “logged” in byte-granularity,

20n SLC Flash this means that all updated bits change from 1 to 0

OOB Area on Flash (128 Bytes)

|
| l Flash data | ECCiital |ECCdeIta_rec 1]---[ECCdelta_rec Nl I
L
:‘%’,PageHeader [T..T] JeJe]e]
; [Tuple 1 k—
% [Tuple 2
£
E [Tuple 3
1
o
b
= |Free Space
(2} Page Footer
z
g g B]ctrl| new_value, | off4 | |n¢w_va|ueM|offM |Ametadata‘
Zs\ | Delta-Record N ‘
[3)
-4
°© Delta-Record Area

Figure 3: Database page-format, supporting IPA on Flash

i.e. each updated byte is represented in delta-record as a <new_value,
offset> pair. The configuration parameter M determines the max-
imum number of such pairs stored in a single delta-record. Fur-
thermore, each delta-record contains: (i) a control_byte - a flag
representing the presence of the delta-record, and (ii) the modi-
fied version of page metadata: header and footer (see Figure 3). To
“accommodate” the delta-records on the page we reserve a certain
amount of space at the end of the page — the so-called delta-record
area. The number of delta-records per page is controlled by the
configuration parameter N. Thus, the delta-record area size for a
particular Nx M configuration is: N x (1 4+ 3M + Ametadata).

Page operations. TPA requires certain modifications in the tra-
ditional operations on database pages. Before the page is placed
into the buffer frame upon being fetched, the storage manager checks
if it contains delta-records. If so, those are applied by changing
the original bytes at defined offsets to their updated values from
the delta-records. Now the page body is in its up-to-date state.
Similarly, the page metadata is updated to its actual version from
Ametadata in the delta-record. Finally, the resulting page is placed
into the buffer frame.

When a transaction updates the content of the page, the buffer
manager checks if it conforms to the IPA NxM scheme. Thus, the
total number of delta-records (including the existing) cannot exceed
N, while the number of changed bytes per delta-record should not
exceed M. If those conditions are fulfilled, the update is performed
as usual, while the offsets of changed bytes are stored in the delta-
record(s). The traditional behavior of the buffer manager is not
affected by IPA, since the buffer contains always the up-to-date
version of the page, and all updates are done as usually in-place.
The violation of one of the above conditions means that upon evic-
tion the page cannot be written out using IPA, and will therefore be
written in a traditional out-of-place manner on Flash. In this case,
the out-of-place flag is set, and further updates are not tracked until
eviction.

On page eviction from the buffer pool, the storage manager checks
whether the out-of-place flag is set. If so, the delta-record area is
reset, and the up-to-date version of the page is written out in an out-
of-place manner. Otherwise, the page can be overwritten in-place
by using in-place appends. In this case, only the delta-record(s)

is transmitted to the Flash storage by using the write_delta() com-
mand.

write_delta(LBA, offset, delta_length, delta_bytes|]);

The delta-record(s) will be appended to the very same physical
Flash page containing the original database page. This is possible
since the original content of the page is left unchanged, while all
updates are coalesced in the appended delta-record. The sole trans-
fer of delta-records (instead of whole pages) significantly reduces
the DBMS write-amplification, whereas appending those delta-records
to original Flash pages eliminates the need to perform page in-
validations and out-of-place writes, which further reduces the GC
overhead (on-device write-amplification). IPA is also applicable to
conventional SSDs with block-device interface (see Section 4).

Please note that the regular database functionality (e.g. recovery,
locking, etc.) is NOT impacted by the proposed approach. Further-
more, it introduces negligible or no overhead to the DBMS, since
(1) it can be selectively applied only to specific database objects
using NoFTL Regions; (ii) change tracking in the buffer produces
min. computational overhead.

Flash types and program interference. In-Place Appends
can be applied to all modern types of Flash memory, namely SLC,
MLC/eMLC and TLC in 3D NAND. On SLC NAND Flash IPA
can be applied without specific limitations. The reason is that the
difference between different threshold voltages (indicating differ-
ent logical bit-codes of the Flash cell: 1 and 0) is large enough to
compensate small deviations which might appear due to program
interference (parasite capacitance-coupling), while (re-)programming
the Flash-page (appending the delta-record). The MLC Flash is
more susceptible to the program interference errors, due to the
shorter distances between different voltage thresholds. To safely
apply In-place Appends on MLC Flash without increasing pro-
gram interference we propose two configuration modes. First, the
MLC Flash can be used in pseudo-SLC mode (pSLC): the Flash
capacity halved as very second page of Flash memory is effec-
tively used (LSB-pages). In this mode the MLC Flash is as tolerant
to program interference errors as SLC Flash. Under the second,
also called odd-MLC mode, the whole MLC Flash capacity is uti-
lized. However, IPA are only applied to LSB pages (odd numbered
pages), whereas MSB pages (even numbered pages) still need to
be programmed in standard out-of-place manner. 3D NAND Flash
addresses program interference issues by using new manufactur-
ing technologies. According to Samsung their 3D V-NAND chips
are: "Bitline Interference Free" and "Wordline Interference Almost
Free" [2]. Therefore, IPA is applicable to 3D NAND using the
above SLC/pSLC or odd-MLC techniques.

4. DEMONSTRATION

During the demonstration we introduce the audience to basics of
the proposed approach and let them evaluate it interactively on real
hardware. The demonstration system consists of the Flash storage
- the OpenSSD research Flash board® connected to a host PC run-
ning Shore-MT storage engine (Figure 4). Using an intuitive GUI
(Figure 5) the audience can configure a sequence of tests and ex-
perience live the performance advantages of the IPA. The proposed
demonstration scenarios are as follows.

Demo-Scenario 1 — Baseline.
The audience picks one of the three available OLTP benchmarks

*Four dual-die Samsung K9LCGO8U1M 8GB packages per mod-
ule. Each package consists of 4096 erase units each holding 128
16KB Flash pages [1].

AR ARARIEREEE

RN -

Figure 4: Demonstration system with the OpenSSD board.

EDBT_Demo
Benchmark Control
Benchmark: |TPC-B

Scaling Factor: (3500 Cancel

Duration: 7200 secs Format

Flash Storage:

Jasmine OpenssD Output.

Reset. Check /shore_kits.cpp:514:_cnd VEASURE impl: Checkpoin-

Figure 5: GUI for the evaluation of IPA.

(TPC-B, TPC-C or TATP), selects the desired scaling factor (lim-
ited by 64GB of Flash storage) and the duration of the test. The
DBMS executes the benchmark using the traditional approach as a
baseline, i.e. every updated DB-page results in one or more out-of-
place writes on Flash. During the benchmark run the audience can
observe the current transactional throughput. At the end detailed
statics of performed I/Os are visualized.

Demo-Scenario 2 — IPA for conventional SSD.

In this scenario the audience examines IPA designed for con-
ventional SSDs. Its implementation assumes the use of traditional
block-device interface. The DBMS writes out whole pages in the
format: page body + delta-record area. After the main parame-
ters of IPA have been selected (Nx M scheme and the mode of IPA
on MLC Flash: pSLC or odd-MLC), and the Flash SSD is com-
pletely formatted (low-level formatting) the benchmark is run with
the same scaling factor and for the same duration as in the base-
line test. The audience can compare the output results of both ap-
proaches (throughput, I/O statistics).

Demo-Scenario 3 — IPA for native Flash.

This scenario is similar to the previous one, however, the DBMS
utilizes IPA designed for native Flash (e.g. NoFTL architecture).
In this case only the delta-records are transferred to the Flash stor-
age. Both IPA scenarios #2 and #3 result in the same reduction
of GC overhead, since in both cases updates are performed as in-
place appends reducing the number of page invalidations. However,

Table 1: TPC-B: traditional approach (no In-Place Appends
[0%x0]) vs. [2x 4] scheme in modes pSLC and odd-MLC.

0x0 2x4 2x4 2x4 2x4
Absolute|Absolute Relative| Absolute| Relative
PSLC | pSLC [%)] | 0dd-MLC odd-MLC [%]

Out-of-Place Writes vs.

In-Place Appends 33/67 51/49

Host Reads (16KB) 37799265540 034/ +47 |4 875961 +29

Host Writes (16KB) 2 028 6263 047 538/ +50 |2 372017 +17

GC Page Migrations 605 047 | 153 201 -75 315 228 -48

GC Erases 15 839 7 401 -53 7 625 -52

Page Migrations

per Host Write 0.2983 | 0.0503 -83 0.1329 -55
GC Erases per Host Write| 0.0078 | 0.0024 -69 0.0032 -59
Transactional Throughput 260 380 +46 313 +20

here IPA uses write_delta command, which significantly reduces
the DBMS write-amplification and the amount of transferred data.

Table 1 shows the comparison results of TPC-B benchmark run-
ning for two hours on OpenSSD board (during the demonstration
the durations of 5 or 10 minutes are sufficient for a comparison).
The experiments were performed (i) without IPA ([0x0] column),
and with IPA using (ii) pSLC and (iii) odd-MLC modes with [2x4]
configuration scheme. Under TPC-B, IPA outperforms the tradi-
tional approach by executing up to 70% less erases and up to 85%
less page migrations. This reduction of GC overhead has two major
advantages: (i) the increase of the transactional throughput of up to
45%, and (ii) doubling the Flash SSD lifetime.

Acknowledgments

This paper was supported by the German BMBF "Software Cam-
pus" (01IS12054) and the German Research Foundation (DFG)
project "Flashy-DB".

S. REFERENCES

[1] The openssd project. http://www.openssd-project.org, 2014.

[2] Samsung v-nand. http://www.samsung.com/us/business/
oem-solutions/pdfs/V-NAND_technology_WP.pdf, 2014.

[3] S. Aritome. NAND flash memory technologies. IEEE Press
series on microelectronic systems. Wiley-IEEE Press, 2016.

[4] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrinsic
characteristics and system implications of flash memory based
solid state drives. In Proc. SIGMETRICS’09.

[5] S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann. From
in-place updates to in-place appends: Revisiting out-of-place
updates on flash. In Proc. SIGMOD’17.

[6] S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann. Noftl:
Database systems on ftl-less flash storage. In Proc. VLDB’13.

[71 S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann.
Revisiting dbms space management for native flash. In Proc.
EDBT, 2016.

[8] S.-W. Lee and B. Moon. Design of flash-based dbms: An
in-page logging approach. In Proc. SIGMOD’07.

[9] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime of
flash-based storage through reducing write amplification from
file systems. In Proc. FAST’13.

