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ABSTRACT

Under update intensive workloads (TPC, LinkBench) small
updates dominate the write behavior, e.g. 70% of all updates
change less than 10 bytes across all TPC OLTP workloads.
These are typically performed as in-place updates and result
in random writes in page-granularity, causing major write-
overhead on Flash storage, a write amplification of several
hundred times and lower device longevity.

In this paper we propose an approach that transforms
those small in-place updates into small update deltas that
are appended to the original page. We utilize the commonly
ignored fact that modern Flash memories (SLC, MLC, 3D
NAND) can handle appends to already programmed physi-
cal pages by using various low-level techniques such as ISPP
to avoid expensive erases and page migrations. Further-
more, we extend the traditional NSM page-layout with a
delta-record area that can absorb those small updates. We
propose a scheme to control the write behavior as well as
the space allocation and sizing of database pages.

The proposed approach has been implemented under Shore-
MT and evaluated on real Flash hardware (OpenSSD) and
a Flash emulator. Compared to In-Page Logging [21] it per-
forms up to 62% less reads and writes and up to 74% less
erases on a range of workloads. The experimental evaluation
indicates: (i) significant reduction of erase operations result-
ing in twice the longevity of Flash devices under update-
intensive workloads; (ii) 15%-60% lower read/write I/0O la-
tencies; (iii) up to 45% higher transactional throughput; (iv)
2x to 3x reduction in overall write amplification.
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1. INTRODUCTION

The architecture and algorithms of data-intensive systems
have been built around the properties of traditional hard-
ware technologies. Many design decisions have been made to
efficiently exploit external storage based on magnetic disks
and compensate for its shortcomings (for instance signifi-
cant access gap, high random latency, low 1/O parallelism).
Many of those elementary assumptions in data management
are 20-30 years old and reflect outdated hardware character-
istics. Consider, for instance, the following two:

e The smallest database unit of I/0 is a whole DB page, typ-
ically aligned to a physical block for performance reasons. It
has been constantly growing in size for the last decades [14].
e The DBMS uses page layouts co-locating data and page/tuple
metadata, regardless of the different volume and update rates.
Both result in significant write-overhead, increased wear and
short longevity of storage devices as well as low performance.
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Figure 1: Write amplification caused by update-

intensive workloads.



To illustrate the impact of the above claims consider the
scenario depicted in Figure 1. Under update-intensive work-
loads, for instance TPC-C, 70% of all update operations
modify less than 10 bytes per page (100 bytes for LinkBench
- Appendix A). (a) Hence, just a few bytes per tuple change.
(b) Nonetheless, on pages with traditional NSM-layout (slot-
ted pages), the whole tuple is modified. (c) In the general
case, it is written to a new offset within the free space on
that page, yielding a change of 20 or more bytes. Further-
more, the whole page header (and footer) must be updated
accordingly, amounting to an additional change of approx.
80 bytes on that page. (d) Due to the block-device interface
used by most storage systems, the whole 4-8KB DB page
is written back to its original location. (e) If a file system
is underneath, multiple blocks are changed. A single 4KB
database write results in 3.4 file system (ext3) writes and a
total of 20KB written [24]. (f) Those cause an additional on-
device write overhead (due to garbage collection (GC) and
wear-leveling (WL)), when written to a Flash device: one
file system host write results in 1 to 5 physical Flash writes.
Thus, a 10 byte update entails a 4-8KB in-place page update,
causing a write amplification of 400 — 800 times. Moreover,
the above example holds not only for small updates, but also
for other types of modifications ranging from deletions (mark
delete) to version invalidations in multi-version DBMSs.

On the one hand, this is partly due to the block-device in-
terface to traditional storage devices. It is dominated by
the HDD model, where only whole blocks at immutable
physical addresses can be read or written. On the other
hand, modern storage technologies in particular Flash mem-
ories exhibit very different characteristics: (i) erase-before-
overwrite - once written a Flash page cannot be overwritten
before the whole Flash block to which it belongs is erased;
(ii) wear issues - a NAND Flash cell can be erased/written
a certain number of times before it eventually wears out.
Flash devices support the same block-device interface as
HDDs, masking the properties of Flash storage, to ensure
backwards compatibility and foster proliferation. Yet, Flash
memories do allow small appends to the still unused space
of a page (see Section 3). These small appends are Flash-
friendly and avoid the erase-before-overwrite rule. Although
this property relaxes the above assumptions, it is masked by
the block-device interface and therefore cannot be utilized
by the DBMS. Fortunately, several approaches proposing
different Flash interfaces and deeper database integration
have been proposed recently [16, 8, 20, 31, 6], demonstrat-
ing an impressive performance potential. More importantly,
such approaches open the algorithmic and architectural op-
portunities to realize the above claim.

Many existing DBMSs use NSM page layouts. Hence,
even with small modifications the whole tuple and the page
header /footer are changed, essentially invalidating the whole
page (Figure 1. ¢, b). Changes to page-layout are essential
for reducing the write amplification. For this purpose, we
propose to extend the NSM page-layout (see Section 6.1) to
absorb modifications as update deltas (delta-records). They
are appended to a reserved portion of the free space within
the page (delta-record-area). In addition, only delta-records
(instead of whole pages) can be written to Flash by a new
write_delta command to realize the above claim.

The contributions of the paper are:

(I) We present an approach called In-Place Appends (IPA)
that reduces the write amplification 2 to 3 times by allowing

small updates to be performed in-place.

(IT) TPA can be selectively applied to specific database ob-
jects (e.g. frequently updated tables or indices) without
extra DBA overhead. The rest of the DB objects are not
impacted. We describe an IPA advisor that suggests ap-
propriate parameter values based on the current workload,
minimizing DBA complexity and the number knobs.

(III) We propose revising the NSM page-layout to accom-
modate updates and modifications accordingly.

(IV) We implemented In-Place Appends under Shore-MT
with NoFTL [16, 19] (see Section 5). Although native Flash
approaches such as NoFTL or CORFU [6] are a natural
choice, making implementation easy and efficient, the idea
is also viable for traditional SSDs with marginal extensions.
(V) The implementation and evaluation are performed on
real hardware (the OpenSSD Flash-research platform) and
a Flash emulator.

(VI) Compared to In-Page Logging [21, 29] IPA performs
51% to 62% less reads, 23% to 62% less writes and 29% to
74% less erases on a range of workloads (Sections 2.1, 8.3).

(VII) The performance evaluation under typical update-intensive

workloads indicates: (a) 35%-85% reduction of both erase
operations and garbage collection write-overhead; (b) up to
45% improvement in transactional throughput; (c) 15%-60%
decrease in 1/O response time and up to 35% decrease in
transactional response time.

(VIII) The proposed approach can be used on different types
of Flash memories (SLC, MLC, 3D). We propose a technique
called write_delta (not to be confused with partial writes on
SLC) to write only the update deltas.

The remainder of this paper discusses related work in Sec-
tion 2 and provides details about the write process of Flash
memory and NoFTL in Sections 3 and 5. Section 4 outlines
the approach to perform byte-size updates with the effect of
a local overwrite, while Sections 6 and 7 present the design
and implementation details. Section 8 provides an analysis
of OLTP benchmarks and discusses the evaluation results.

2. RELATED WORK

2.1 Comparison of IPL versus IPA

The motivation and ideas behind In-Page Logging (IPL)
in [21, 29] are similar to ours. To reduce the write-amplification
caused by the garbage collector Lee et al. [21] modify the
DBMS buffer and storage managers to avoid in-place up-
dates. All updates are logged per page and placed in in-
memory log sectors. As soon as a log sector of a particular
page becomes full or the page is evicted from the buffer
the log records from the respective log sector are written
into reserved Flash page(s) on the Flash block (erase unit),
where the original page is located. Thus, the original page is
left unchanged while its update log records are written to a
new location on Flash. To "re-create” the up-to-date version
of the page, two (or more) read I/Os must be performed:
(i) read of the original page; and (ii) read of one or more
Flash pages with the corresponding update logs. Hereafter,
the update logs are applied to the original page on-the-fly
and the up-to-date version of a page is placed in the buffer.
Once the size of the update logs becomes greater than the
reserved space on a Flash block, all pages on that partic-
ular block must be merged with their updates and written
to a new block (through the special merge operation). The
merge operation causes additional I/O as well as CPU over-



head. In the worst case under skew-conditions, even though
only few hot pages in a Flash block are frequently updated,
all pages of the block must be read, transferred to the host
and written back to a new Flash block during merge.

Both IPL and IPA reduce the number of page invalidations
on Flash and consequently the write-amplification caused by
the garbage collector. Both achieve this by replacing typi-
cal in-place page updates with keeping the original version
of the data and augmenting it with update logs (similar to
REDO logs). The key difference is that our approach stores
the delta-records (update logs) on the very same Flash page
containing the original version of the data, instead of us-
ing separate Flash pages for them. In other words, we per-
form in-page logging solely within a particular Flash page.
To do this, we relax the commonly accepted axiom that
Flash memory always follows the erase-before-rewrite prin-
ciple. By using the techniques described in Sections 3 and
4) and a clever page layout, we can over-write the original
Flash page without executing a previous erase operation.

The differences between both approaches have the follow-
ing effect:

1. Under IPA no additional READ I/Os are needed to re-
create the up-to-date page version since all update logs
are co-located on the same physical Flash page as the
original data. In contrast, under IPL each fetch operation
requires reading at least one additional Flash page storing
update logs (those are co-located on the same erase unit
as the original Flash page, but are stored on separate
Flash pages). The latter results in doubling the read 1/0
load. In read-heavy workloads with 70%-90% reads, this
becomes a performance issue.

2. In-Place Appends do not suffer from merge operations
present in IPL. They introduce both I/O and CPU over-
heads. Furthermore, merges in IPL are blocking, i.e. the
block with the full log region must be merged before the
next log record can be stored. As a result, under IPL the
unused SSD space can not be utilized to delay/amortize
expensive merge operations and corresponding erases. In
other words, the CPU and I/O overheads (1 merge =
N*READ I/O + N*WRITE I/O + ERASE) produced
by merges are constant for a particular workload and IPL
configuration, and independent of the drive’s free space,
be it 5% or 95%. Moreover, merges are always done in
foreground and cannot be executed as background re-
quests in order to utilize on-board CPU resources and
internal SSD parallelism. Although, a larger log region
in IPL would reduce the write-amplification, this would
simultaneously increase the required space and the read-
amplification.

3. IPL reserves at least three times as much physical Flash
space as IPA does. Furthermore, under certain condi-
tions IPL can experience poor space utilization — for in-
stance, under workloads dominated by small random up-
dates since those rarely accumulate in memory-resident
log-sectors before page evictions.

4. IPL is applied to the complete database, while IPA can be
applied selectively (using regions, Sect. 5) only to certain
database objects, dominated by small-size updates.

5. IPL is well-suited for SLC Flash® with the ability to
perform partial writes (assuming that the Flash mem-
ory can perform small sector writes in 512B granularity

!SLC was widely spread at the time [21] was proposed.

[21]). However, on MLC Flash with large physical pages
and without partial programming, the disadvantages and
overheads of IPL become more significant. In-Place Ap-
pends are suitable for SLC and MLC and benefit from
the trend of increasing Flash page sizes.

2.2 Multi-versioning and delta-writes

[13] has proposed an approach for reducing the write-
amplification on Flash storage caused by tuple-version inval-
idation in multi-version databases (MV-DBMS). Typically,
MV-DBMSs perform the invalidation of previous versions of
a data item in-place, i.e. an invalidation timestamp is set
physically on the tuple-version record. This modification
causes a significant write-amplification, since a change of
just a timestamp causes the whole page to be overwritten.
The proposed SIAS approach avoids the in-place invalida-
tion of records by maintaining a singly-linked list of record
versions. The new version of a record contains a pointer to
the previous one, thus implicitly invalidating the latter.

[32] describes an optimization approach for indexing in
MV-DBMS by using "DeltaBlocks”, Flash SSDs and append-
based storage techniques. The main goal of the "DeltaBlock”
approach is to ensure that the ”latest version of any record
is retrievable within at most one HDD disk I/O and one
(or a constant number of) SSD I/Os” [32]. For this purpose
[32] stores the deltas of consecutive versions of a particular
record on fast SSD storage. This approach reduces the num-
ber of HDD I/Os by substitutining them with SSD I/Os. [32]
relies on typical FTL-based SSDs. It addresses neither the
traditional write process on Flash (as we do using ISPP and
appends within the already written physical Flash page),
nor the reduction of SSD GC overhead.

[7] suggests the utilization of in-page logs to avoid in-place
updates (costly random updates) in MV-DBMS. However,
[7] does not utilise techniques such as ISPP or IPA for re-
ducing GC on wear-prone memories.

2.3 Re-Programming on Flash and ISPP

Our approach is based on the utilization of Incremental
Step Pulse Programming (ISPP) for performing In-Place
Appends on the original Flash pages. The ability to over-
write Flash pages without a previous erase operation is rarely
discussed and utilized. To the best of our knowledge only
Cai et al. in [35] propose an approach "Correct-and-Refresh”,
which allows to mitigate retention errors on Flash using
this property. The charge on the floating gate of a Flash
cell leaks away over time. Those cell charge leakages can
lead to bit errors (retention errors) while reading the Flash
page. Correct-and-Refresh uses the ISPP to over-write (re-
program) the original Flash pages in-place in order to re-
store the desired charge level on Flash cells. The Flash
pages are periodically read, the bit errors are corrected on-
the-fly using ECC, and consequently the corrected data is
programmed to the same Flash pages.

More details about ISPP and the physical working-principles
of Flash memory can be found in [34, 4].

2.4 Native Flash

An overview of Flash storage properties is given in [10,
28], design and performance tradeoffs are discussed in [3].
A comprehensive survey of Flash Translation Layer schemes
can be found in [25, 11].



Modern Flash SSDs are backwards compatible with HDDs.
The compatibility is provided through an additional ab-
straction layer (FTL). Although it allows for fast and easy
replacement of HDDs with SSDs, the black-box architec-
ture of Flash storage produces additional overhead and un-
predictable performance variations. In recent years both
academia and industry have proposed multiple approaches
to eliminate those drawbacks.

Bonnet et al. in [8] proposed the bimodal SSDs. They are
claimed to operate in two modes: (i) if a DBMS issues "con-
strained” I/O patterns (i.e. no in-place updates, no random
writes) the SSD uses minimal FTL, providing only block-
level mapping and wear-leveling; (ii) for all "unconstrained”
1/0 patterns the SSD switches to traditional FTL. While for
DSS with read-mostly workloads and batch updates such bi-
modal SSDs would be beneficial, in OLTP systems most of
the time the DBMS issues unconstrained I/O patterns.

Kang et al. [20] have suggested to enrich the responsi-
bility of on-device FTLs in order to utilize internal out-of-
place updates for providing DBMS transactional atomicity.
Through a modified I/O interface the DBMS notifies the
SSD about transaction demarcation (begin and end of trans-
actions). The latter maintains an internal transactional ta-
ble and keeps obsolete versions of modified database pages
belonging to running transactions for the recovery process.
Although the approach allows for significant reduction of
write I/O (i.e. no need for WAL), it has several drawbacks:
(i) due to the additional memory and computational over-
heads for on-board SSD resources it is suitable only for sys-
tems with low level of concurrency; (ii) disadvantages of
the block-device interface and the black-box architecture of
SSDs are not considered in this solution.

Ouyang et al. [31] introduce a new I/O primitive ”atomic-
write”, which is utilized by the MySQL InnoDB storage en-
gine to eliminate redundant writes performed for recovery
purposees (i.e. DoubleWrite buffer). The approach, how-
ever, does not allow to execute several "atomic-writes” si-
multaneously, which is an issue in highly concurrent OLTP
systems. The problems resulting from the traditional black-
box architecture of SSDs are not addressed either.

There are also several proposals that suggest usage of raw
Flash memory for objects with special I/O access patterns.
CORFU [6] provided the design of a shared log implemented
on top of a cluster of raw Flash units. [30] proposes the use
of native Flash in the context of buffer management.

In this work we have used the NoFTL architecture [16] for
implementation and evaluation of the proposed approach. It
attempts to solve all the main problems resulting from the
black-box architecture of modern SSDs by giving the DBMS
full and exclusive control over the raw Flash memory (Figure
3). This architecture provides the uniform solution for all
workloads and DB-objects with different characteristics.

3. THE WRITE PROCESS OF NAND FLASH

It is commonly accepted that once a page is written on
Flash memory it cannot be overwritten in-place. To store a
new version of a page at the same location one must read into
the buffer all valid pages of the same block (usually 32-256
pages), erase the complete block, and afterwards write back
the valid pages along with the new version of the updated
page. Since reading into the buffer, erasing and writing back
multiple Flash pages for each update would be far too costly
in terms of time and wear-out of Flash blocks, all modern

SSDs implement some kind of out-of-place update strategy.
Each updated page is written to a new clean location and the
logical to physical mapping scheme points to the most re-
cent version of the page. The garbage collector periodically
collects obsolete versions of pages and erases (victim) Flash
blocks, thus ensuring enough free space for further write re-
quests. Valid pages from the victim blocks are rewritten by
the garbage collector to new locations (page migrations).

It is worth looking a bit deeper. The core of Flash memory
is the Flash cell - a floating gate transistor. A cell can store
in its floating gate a negative charge. The amount of this
charge represents the bit-code of the stored information. In
Flash composed of Single-Level-Cells (SLC) each cell stores
only one bit: no charge or less than half of maximum charge
represents bit 1, while a charge greater than half the maxi-
mum represents bit 0. In Multi-Level-Cell (MLC) Flash each
cell stores two bits, i.e. between no charge and maximum
charge of the cell we distinguish now four different charge
levels for bit-codes 11, 10, 01, 00. Similarly a Triple-Level-
Cell (TLC) Flash cell is capable of storing eight different
charge levels, coding the states 111, 110, 101, ... 001, 000.
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Figure 2: Organization of SLC NAND Flash mem-
ory and ISPP programming

Flash memory is a matrix of Flash cells, combined in
a lattice where rows represent wordlines and columns bit-
lines (Figure 2). Cells which share the same wordline build
Flash pages (one or more depending on the architecture and
whether it is SLC or MLC Flash). The number of cells
on the same bitline determines the size of the Flash block,
while the number of bitlines determines the size of the Flash
page. This organization is the main reason why Flash mem-
ory is read and programmed in page units, and erased in
block units. This is done by manipulating the voltage on
the word- and bit-lines.

SSDs use an Incremental Step Pulse Programming scheme
(ISPP) to program on Flash [34, 27], i.e. to increase selec-
tively the charge of individual cells (Figure 2). ISPP pro-
grams cells (if needed) in multiple iterations. After each
program iteration the charge in the cells is controlled, and
if it is lower than the desired charge it is increased in a sub-
sequent iteration. The procedure repeats until each cell has
the desired charge level. Therefore, the charge of a cell can
be increased individually at any time up to its maximum
charge without the need of an erase operation.

However, it is not possible to decrease the charge of an
individual cell in the Flash page. While ISPP can increase



the charge of individual cells in any Flash page, the erase op-
eration resets all cells belonging to a block (32 - 256 pages).

Now it becomes clear why traditional SSDs must perform
out-of-place updates. An in-place update is only possible if
the change would require every changed bit of the new value
to go from low charge (logical 1 for SLC) to high charge
(logical 0 for SLC). Since the probability of this happening
for an arbitrary update is virtually zero, SSDs are forced to
perform out-of-place updates.

In our approach we exploit the fact that ISPP can increase
the charge level of any particular cell at any time to achieve
the effect of an update in-place for small updates.

4. IN-PLACE APPENDS ON A FLASH PAGE

The conventional SSD strategy of writing out-of-place and
garbage collecting obsolete versions of pages results in mas-
sive write amplification. In our approach, whenever a page
is evicted from the buffer, it is written back into the same
location on Flash without a previous erase. To achieve this
we reserve a small portion of the original page that is left
unprogrammed by ISPP, i.e. the corresponding cells remain
without charge. Small updates are appended in the form of
redo log entries (delta-records) in the reserved area of the
same page. We call this the delta-record area (see Section
6.1). The in-place append is possible since all changed cells
get their charges increased. The already programmed cells
(by the initial program operation) can either be (i) checked
by ISPP (e.g. "Correct-and-Refresh” for correction of reten-
tion errors [35]); or (ii) might be completely omitted from
the programming process. The latter is similar to a pro-
gramming of logical “1”, i.e. the charge level of those cells
is left unchanged by setting the voltage on their bitlines to
VCC - the so-called "self-boosting” approach [34].

In their simplest form, small updates to a page can be
stored as offset-value pairs, placed in the delta-record area
of the same page. When flushed, it is written out to its
original Flash location (Section 6.2). Next time it is read
into the buffer, the delta-record is applied. This can be
repeated as long as there is free delta-record area space.

In-Place Appends is applicable to different types of Flash
memories®, namely SLC, MLC/eMLC and TLC in 3D NAND
organizations. The specifics of how the IPA is applied on
those Flash types are described briefly in Appendix C. For
MLC Flash there are two possibilities to apply IPA: either
the pSLC or the odd-MLC modes. MLC Flash maps ev-
ery wordline N to two pages: the odd-numbered LSB-page
(2N — 1) and the even-numbered MSB-page (2N + 2). In
case of pSLC the MLC Flash is used in pseudo SLC mode,
i.e. only LSB-pages are utilized. In the odd-MLC mode the
whole capacity of MLC Flash is utilized, but IPA may only
be applied to LSB-pages, while every MSB-page write is still
performed out-of-place. For example, IPA can be applied on
the LSB-page 59 on wordline WL30, whereas the MSB-page
62 on the same wordline can only be updated out-of-place.

5. BRIEF OVERVIEW OF NOFTL

The approach presented here was implemented and eval-
uated as part of NoFTL (Figure 3) [16, 19]. We show that
NoFTL or alternative open architectures like CORFU [6] are

2Since we have no direct contacts to Flash manufacturers
it is virtually impossible to test IPA on all possible techno-
logical variations of the main Flash types.

a natural choice, which makes the implementation of IPA

easy and efficient. However, IPA can also be implemented
in conventional SSD architectures (see Section 7). The main
concepts behind NoFTL are to integrate Flash management
into the DBMS (Figure 3). The access to rich DBMS meta-
data (e.g. object type, format, update frequency) allows for
significant optimization of the Flash management function-

ality. Moreover, NoFTL allows native DBMS subsystems
(e.g. buffer management and concurrency control) to ben-

efit from controlled data placement and knowledge of the

internal Flash organization.

CREATE REGION rgIPA ( MAX_CHIPS=8, MAX_SIZE=512M,
MAX_CHANNELS=4, IPA_MODE = pSLC);

CREATE TABLESPACE tsIPA (REGION=rgIPA, EXTENT = 128K);

CREATE TABLE T(t_id NUMBER(3) ) TABLESPACE tsIPA;
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Figure 3: NoFTL Architecture with Regions sup-
porting In-Place Appends.

[19] introduces the notion of NoFTL regions, which allows
to apply the In-Place Appends selectively to specific DB
objects (or sets thereof). [19] claims that NoFTL regions do
not introduce additional complexity to the DBA since those
can be coupled to existing logical storage structures.

On MLC Flash, regions make it possible to apply both
IPA modes (pSLC and odd-MLC) simultaneously. For in-
stance, write-intensive tables or indexes dominated by small
updates can be placed in a region (e.g. region rgIPA, Figure
3), which uses pSLC as IPA mode. The less write-intensive
objects can be placed in another region, which utilizes IPA
in an odd-MLC mode. Read-only objects or objects domi-
nated by large updates can be placed in yet another region,
which does not utilize IPA.

6. IPA -DESIGN AND IMPLEMENTATION

The proposed approach reflects two main factors: the first
one is the average updated data size on a DB page by the
time it is flushed to stable storage, while the second factor
relates to the physical properties of Flash memory. Taking
into account both factors we propose a [INxM] scheme for
performing IPA. N is the maximum number of possible sub-
sequent In-Place Appends (delta-records), while M is the
maximum number of changed bytes per update. If more
than M bytes were changed or N delta-records were already
appended, the page is written out-of-place, while its old ver-
sion is marked as obsolete and can be garbage collected.

6.1 Database Page-Layout
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Figure 4: Database page-format for IPA on Flash

Handling small updates requires a revision of the tradi-
tional NSM database page-layout (Figure 4). Under IPA
we reserve a certain portion of the free space area of each
database page called delta-record area. Every small in-page
update is tracked, and the modified data eventually is placed
in a delta-record. Hence, each small in-place update is trans-
formed to an in-place append, which can be programmed us-
ing ISPP (Sections 8 and 4), avoiding out-of-place writes or
expensive Flash erases.

Delta-record format. Each delta-record (Figure 4) com-
prises a control byte and a number of <new_value,offset>
pairs covering modifications in the page body and in the
page metadata (page_header and page_footer). The con-
trol byte (ctrl) indicates the existence of a corresponding
delta-record. The <new_valuei. nr,offseti. pr> pairs account
for the modified bytes in different tuple/attribute values:
new_valuei . pr — represents the modified byte at a given po-
sition, specified by its two-byte offset:.. p from the beginning
of the page. For more details consider the example below.
Only modifications of byte-granularity are supported, thus
|new_value| = 1(byte). According to the [NxM] scheme,
the number of <new_valuei. nr,offset:. . ar> pairs per delta-
record cannot exceed M (and ideally is equal to M):

M > (number,of,pairs = Z \new,valuei|)

1=1

Realistically, M < 125 (bytes), as established in Section
8.2 and in Appendix A. The choice of byte-granularity for
modifications instead of tuple-attribute granularity results
in higher space efficiency and simplicity.

The NSM page metadata comprises the so called page_header
and page_footer. They reflect the slot table, containing the
offsets of each record within the page, transactional infor-
mation such as PageLSN, and free/used space. It is essential
to consider metadata modifications as they occur upon each
page update. In the simplest update case only the PageLSN
and a fixed-length attribute value change, in the general case
all of the above may change. Modifications to page metadata
are tracked with the same value/offset mechanism, hence
<new_valuerr11)..v,offset(ar41)..v>. The byte-level track-
ing for page metadata allows for space efficiency. For exam-
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Figure 5: Example: Database page-format for In-
Place Appends on Flash. The page contains two
delta records, recording changes to three tuples.

ple, the PageLSN is 8-bytes in Shore-MT . However, only
the least-significant byte changes very frequently, while the
most significant bytes are seldom modified as they reflect the
LogFileID. Hence, using change tracking in byte-granularity
we record only the modified, least-significant bytes instead of
the complete PageLSN. Alternatively, the delta-record may
contain the complete page metadata. However, our exper-
iments indicate that the byte-level tracking mechanism re-
duces the delta-area size by 49% for a [2x3] scheme.
Sizing the delta-record area. According to the [N x M]
scheme, a database page can host up to N delta-records,
each modifying at most M bytes. Obviously, a change of 1
byte yields the creation of a 3-byte <new_value,offset> pair
in the delta-record (1-byte new_value and 2 bytes offset®).
The delta-record size is therefore: 1+ 3M + 3V. Hence, the
size of the delta-record area is: N*(14+3M+3V). V denotes
the number of modified bytes in page metadata. In practice,
V < 12 for Shore-MT under OLTP workloads. The above
rule is used as a space reservation scheme to allocate the
delta-record area on every database page. The choice of N,
M and V can be automated by an IPA advisor (Sect. 8.4).
Example. Assume a [2x3] configuration for the [N xM]
scheme under TPC-C. The delta-record area will have two
record slots, while a delta-record can host modifications of
at most 3 bytes, yielding at most V=12 bytes of metadata
changes. Hence the delta-record size is 1 +3%3+3%12 = 46
bytes. The delta-record area size is 2% (1+3%3+3%12) = 92
bytes. For a 4KB database page this implies 2.2% reserved
space. Consider table R and the three transactions Tz,
Txz1 and T'z2 executed in serial order (Figure 5). Txo cre-
ates R and inserts Tuples 1 through 3 initializing the values
of A7 and Ag of all tuples to 9 and 7, respectively. Page

3 Assuming a max. DB-page size of 64KB, else 3 bytes.



4711 is allocated, formatted and filled. T'zo commits suc-
cessfully and commit/end LSN is 1. Assume page 4711 got
evicted; it is written out-of-place since IPA is not applicable
for newly allocated pages. Tz modifies all tuples, chang-
ing the value of attribute A7 to 3. Thus, the page 4711 is
fetched into the database buffer and modified accordingly.
Attribute A7 is a fixed length integer and only the least-
significant byte is modified. Hence, for each tuple a 3-byte
value/offset pair is created. The PageLSN is modified to the
commit record LSN of Tz, (e.g. 10) - 1 byte value/2 byte
offset. The free space and the slot tables remain unchanged,
since a fixed-length attribute is updated. This is why the
<new_valuerry1y..v,offselar11y. v > pair <10,8> is created.
Assume page 4711 got evicted again, which forces the cre-
ation of delta-record 1. Analogously, T'z2 modifies all tuples
by changing A7 to 3. On the next eviction of page 4711 the
delta-record 2 is created.

6.2 Page Operations

In this section we describe how the DBMS handles delta-
record pages: what operations are defined on them, how
tuples are fetched and modified, how such pages are buffered,
and how the storage manager controls the writing process.

The page is fetched into the DB buffer. As the page
is read from Flash we first check whether it was already up-
dated in-place: the control_bytes are read to determine the
actual number of delta_records. If none are available, we are
done and the page can be passed on for further processing.
Alternatively, if delta-records are present, they are applied in
forward order: the page data (tuples) and metadata (header
and footer) are updated by replacing the changed bytes.

The page is modified in the DB buffer. Updates are
performed as usual in-place, but changes on the page body
are tracked. If the total size of those changes is smaller
than the available delta-record area, the offsets of changed
bytes are kept in new delta-record(s). Otherwise, if there
is insufficient delta-area space, the page is marked to be
written out-of-place upon eviction, and further changes are
not tracked. Note that a delta-area overflow does not cause
any additional writes, it merely disallows IPA on that page
until it is evicted.

The size calculations are performed as follows. Assume
the page has been freshly fetched and contains Ng delta-
records from the last time it was evicted (Ng < N). Ng can
be determined by the control_bytes. The maximum number
of possible changes is: Cp, = (N — Ng) * M. In other words,
at most Cp bytes can be modified and at most (N — Ng)
additional delta-records can be inserted. Therefore, as long
as total number of changed bytes U does not exceed Cj,
IPA are allowed. [(U — Cy)/M] delta-records are added and
(U — Cy) offset-value pairs are created. However, once U >
C, we mark the page to be written out-of-place and stop
tracking further updates.

The page is evicted and flushed to stable storage.
When the page gets evicted from the buffer pool we check
whether it can be updated using in-place appends or should
be written out-of-place. If the page must be written out-of-
place, we reset the delta-record area and write the up-to-date
page from the buffer to new location on Flash memory. If
the in-place append can be performed, we first complete the
current delta-record(s) with the new values of the changed
bytes (the offsets of those bytes are already in delta-record).
Thereafter these delta-records are written to the Flash stor-

age using the write_delta command. Write_delta appends
delta-records to the very same physical Flash page the orig-
inal database page resides on.

This approach introduces negligible or no overhead for the
database management system. First, the NoFTL architec-
ture allows for applying IPA only to selected database ob-
jects using NoFTL Regions [19] (e.g. solely for the STOCK
table in TPC-C, or for 3 from 4 tables in TPC-B), where the
small updates of few bytes dominate. Second, the replace-
ment of few bytes upon fetching, as well as the tracking of
changes during updates in the buffer produces minimal com-
putational overhead. Remember that IPA targets only small
updates. In the schemes used for TPC benchmarks ([2x 3] or
[2x4]) at most two consequent In-Place Appends are “deal-
ing” with less than 40 bytes in total (body + metadata).
In case of social network (graph) workloads this value can
increase to 125 bytes. Replacing so many bytes has shown
no noticeable performance degradation.

Remaining DBMS functionality. Please note that
the rest of the database functionality (e.g. recovery, lock-
ing, etc.) is NOT impacted by IPA. The DBMS is operat-
ing, as usual, performing modifications in-place on buffered
pages. The approach touches mainly the process of evicting
the pages from and fetching them into the buffer. Con-
sider, for instance, the rollback operation in a WAL-based
system. A DB-page Pab, stored on a physical Flash page
Ptirasn, gets evicted from the buffer pool. Py, is dirty and
contains uncommitted modifications from an active trans-
action T,. If those changes conform to the [N xM] scheme,
they are transformed into In-Place Appends (delta-record)
and appended to Pyiqsn. Assume now that T, aborts and
its changes must be rolled back. Pyiqsp is read, the delta-
record is applied, and thus the up-to-date version of Py is
re-created and placed in a free buffer frame. Now the regular
UNDO process on Py, can be performed, i.e. the correspond-
ing UNDO log records are read and applied. Given enough
delta-record area space the byte-changes of these UNDO
modifications are placed there, otherwise Py, is marked for
out-of-place write. If later on Py, is evicted again, it will be
re-written back to Pyiasn using IPA, even if further modi-
fications have been performed, given there is enough delta-
record area space to host them.

Flash ECC and Page OOB Area. The proposed ap-
proach requires an adjustment of the physical error correc-
tion (ECC) strategy on Flash. NoFTL allows for a simple
adjustment offering two possible alternatives.

The first one shifts the responsibility of performing ECC
to the storage layer of the DBMS. In NoFTL the DBMS has
direct control over the physical addresses of Flash pages and
the access to the page’s OOB area. Based on the [N xM]
scheme, ECC can be computed in at most N steps. The
ECC code of a page will then comprise the page body ECC
(ECCinitial, Figure 4), and an ECC for every delta-record
(ECCqetarect -.. ECCgeitareen, Figure 4). Those codes
can also be physically appended in-place to the page OOB
area utilizing ISPP. When the page is retrieved, the ECC
codes are applied to the corresponding sections of the page,
so that bit errors in the page body and delta-record area can
be detected and corrected.

Under the second alternative, the adjusted ECC algorithm
is running on the on-board SSD controller. In this case,
however, the controller requires information about the used



[N x M] scheme, to apply the resepective ECC parts accord-
ingly, which requires an additional control command.

7. IN-PLACE APPENDS - I/0 COMMANDS

To integrate the IPA in the I/0O stack, we propose to add
the write_delta() command as a first class citizen besides
read and write. A DBMS write is performed as an out-of-
place write on Flash, if the block has already been written,
while a write_delta() performs an in-place append:

write_delta( LBA, offset, delta_length, delta_bytes| ] );

Hence, a single delta-record of a certain delta_length can
be written to a DB-page identified by its logical address
LBA. The parameter offset specifies the byte-offset from the
beginning of the DB-page, where the delta-record should be
placed, whereas delta_bytes/ | is the payload of the record.
The write_delta command is general-purpose and indepen-
dent of the proposed page layout. It can serve different
[N xM] schemes as those can be configured per database
object. Please note that delta-writes should not be con-
fused with the so called partial writes, available on some SLC
NAND chips. Delta-writes can be implemented on conven-
tional SSD and on Native Flash [15].

8. EXPERIMENTAL EVALUATION

8.1 Testbed

We implemented In-Place Appends under NoFTL in Shore-
MT*. Shore-MT is a recognized storage engine supporting
ACID transactions, ARIES-type logging, indices, buffer man-
agement, as well as an implementation of the standard TPC
benchmarks. Our performance evaluation is carried out us-
ing the OpenSSD hardware and the real-time Flash Emula-
tor[16], which has been validated against OpenSSD [18].

The OpenSSD Jasmine board [1] is an open Flash-SSD re-
search platform with two MLC Flash modules from Samsung
and a total volume of 64GB. The Flash memory is controlled
by an ARM controller from Indilinx and is connected to the
host through a SATA2.0 interface. The evaluation of IPA
on MLC Flash and OpenSSD was performed using NoFTL
Regions configured in both possible modes: pSLC and odd-
MLC (see Section 4). Additional technical details and eval-
uation specifics regarding the OpenSSD Jasmine board are
pointed out in Appendix D. IPA performance numbers on
OpenSSD and the Flash emulator differ due to the missing
OpenSSD parallelism (point 1 in Appendix D) as well as
the small buffer size (point 3 in Appendix D) causing an
1/0 bound system and higher effect of IPA.

To extend the evaluation profile with I/O parallelism and
larger database buffer sizes, experiments have also been per-
formed on the real-time Flash emulator. Those tests were
done on an Intel Xeon server with 32 E7-4830 2.13 GHz
CPU-cores (64 Threads, 64 KB L1 cache, 256 KB L2 cache
and 24 MB L3 cache) and 128 GB RAM under Ubuntu
12.04.03 LTS 64-bit with kernel 3.8.0. The emulated Flash
storage comprises 16 SLC chips, 10% over-provisioning and
is managed using a page-level mapping scheme under NoFTL.

8.2 Analysis of update-intensive benchmarks

A detailed analysis of typical update-intensive workloads
(TPC-B, TPC-C and LinkBench [5]) substantiates our claim
about small update sizes. This analysis has been performed
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under MySQL InnoDB (LinkBench) and Shore-MT (TPC-
B/-C). We recorded live traces of the above benchmarks
running for 2 (TPC-C/-B) and 4 (Linkbench) hours. The
DB-sizes are roughly 50GB, while the buffer sizes vary from
10% to 90% of the initial DB-sizes.

Number of Percentiles
changed bytes
('net data, 2gross data)| TPC-B' TPC-C' | LinkBench®

<3 | 10-th 55-th 0-th

<7 62-th 83-th 0-th
<20 99-th 88-th 5-th
<100 99-th 93-th 40-th
<125 99-th 94-th 50-th

Table 1: Update-sizes in TPC-B/-C and LinkBench
(Buffer 75%, eager eviction strategy).

In TPC-C and TPC-B with buffer size 75% of the ini-
tial DB-size (and the default eager eviction strategy) more
than 80% of all DBMS writes change effectively less than 20
bytes in total on any particular page (Table 1). Regardless
of those small update sizes, modern DBMSs write the whole
database page, resulting in write-amplification of several
hundred times. Further analyses of those benchmarks, their
transaction profiles and update CDFs for different buffer
sizes and eviction strategies are provided in Appendix A.

Social graph workloads (LinkBench[5]) have update-behavior
similar to traditional OLTP workloads, and thus can sig-
nificantly benefit from IPA. However, the update-sizes are
larger and the data set does not typically fit in memory.
The update CDF for LinkBench is presented in Figure 10
in Appendix A. 47%-76% of all updates modify less than
125 bytes gross per page (including header and footer) with
buffer sizes of 20% to 90% of the DB-size. Even such work-
loads are suitable for IPA. Note that the net update-sizes
(excluding page header and footer) are smaller than 100B.

8.3 Performance Comparison of IPL and IPA

To evaluate IPA against In-Page Logging we have used
the IPL simulator described in [21], the original source code
and I/O traces were kindly provided by the authors. Fur-
thermore, we have compared both approaches based on the
very same configuration used in the original IPL paper: (i)
logical DB page size — 8KB; (ii) SLC Flash with 64 2KB
physical pages per erase unit and 512B partial writes; (iii)
the in-memory log sector per logical DB page is equal to
the size of a partial write (512B); and (iv) the size of log
region per erase unit is 8KB. For a fair comparison we used
both: the original traces from [21] as well as newly recorded
OLTP traces. The reason for using new traces was twofold:
(i) the original traces do not include page fetch events (i.e.
they do not contain any READ I/0), and thus do not allow
analyzing the read overhead; (ii) the original traces only re-
flect TPC-C, whereas our goal was evaluating under further
OLTP workloads. Thus, we have recorded traces for TPC-
C, TPC-B and TATP benchmarks running in Shore-MT,
configured with In-Place Appends. Each of those traces has
been replayed on the original IPL simulator. The compar-
ative results are shown in Table 2. Detailed description of
the I/O Read and Write Amplifactions formulae for both
approaches is provided in Appendix B.

IPA outperforms IPL (Table 2) by performing 60%, 52%
and 51% less reads; 62%, 23% and 37% less writes; as well as



TPC-B TPC-C TATP
IPA IPL IPA IPL IPA IPL
1/0 Write Amplific. 0.54 1.43 0.94 1.22 0.64 1.01
I/0 Read Amplific. | 1.01 2.54 1.06 2.20 1.01 2.07
Erases 35958 | 137962 | 41486 | 58294 | 11873 | 30155

Table 2: Comparison of IPA to IPL.

74%, 29% and 61% less erases under the same TPC-B, TPC-
C and TATP traces, respectively. Under the above settings
IPL reserves 6.25% of the space, while IPA configurations
[2x3] and [2x4] require at most 2%. A larger IPL log re-
gion would reduce the write-amplification (less merges), but
would increase the required reserved space on each block and
the read-amplification (e.g. a log region of 16KB would re-
quire already 12.5% of Flash space to be reserved for update
logs and would result in more than 3x read-amplification).
Read reduction (51% — 60%) substantiates claim 1, Section
2.1, while the reduction of writes (23% — 62%) and erases
(29% —74%) substantiate claim 2. The space requirements
of both approaches substantiate claim 3, Section 2.1.

8.4 Performance Evalution of IPA

[NxM] Scheme Selection and Space Utilization.
The value M is chosen based on an analysis of update-sizes
of a given OLTP workload (see Table 1 and Figures 7, 8 and
9 in Appendix A). Thus, for TPC-C the natural choice is
M = 3, since the majority of all updates modify less than 3
bytes of net data (50% - 75% depending on the buffer size).
For TPC-B we opted for M = 4, since more than 50% to
90% of all updates change exactly 4 bytes of net data.

The choice of N - the maximum number of delta-records
per page - is influenced by several factors. (i) Flash specifics
(see Appendix C): the value of N for SLC Flash is signifi-
cantly higher than for MLC Flash. (ii) Space consumption:
the larger the value of N, the more space is reserved for the
delta-record area, and hence the bigger the database size.
(iii) Workload properties (locality, skew) influence the up-

date frequency and distribution over database pages. Through-

out the experiments we have selected N to be 2 or 3 pri-
marily based on (i). We assume that this choice matches
every MLC or 3D Flash. No issues with increased wear or
interference errors were observed throughout the tests on
OpenSSD Jasmine with MLC Flash chips. At most, 1 bit
error per 16KB Flash pages was detected and corrected (in
both cases, with and without IPA).

A sensitivity analysis of M and N for TPC-C and LinkBench

is presented in Table 3. Note that the reported increase of
relative space consumption (red) for a particular [N xM]
scheme represents the worst case, i.e. IPA is applied to all
DB-objects. However, using NoFTL regions IPA can be ap-
plied selectively (only to DB-objects dominated by small-size
updates) to decrease the actual space overhead significantly.
Throughout all experiments under different workloads we
observed an increase of database sizes from 1% to at most
14%, when TPA is applied to all DB-objects.

Moreover, IPA allows decreasing the size of the over-provi-
sioning area without a loss of performance. This is especially
true for SSDs that use hybrid mapping schemes (like FASTer
[23], where over-provisioning defines the log area). The over-
provisioning area absorbs all incoming write requests and
when full the FTL merge operations merge updated data
with the data stored in the data area. Since IPA results

TPC-C (75% buffer, 4KB pages, M=updated bytes in net data)

M=3 M=6 M=10 M=15 M=20
1.34.7]1.1|-32(40.4|1.3| -38 |42.7|1.6| -41 |42.8(2.0| -41 |42.8 |2.4| -41
N 2 46.1|2.2|-43 |53.6|2.7|-51|56.83.3| -55 | 56.8|4.0| -55 | 56.8 |4.7| -55
3 |51.6|3.4|-4960.1|4.0| -58 | 63.7 |4.9| -62 |64.0|6.0| -62 |64.0|7.1| -62
4 154.9|4.5|-52|64.2|5.4| -6268.0 6.5 -66 [68.3(8.0(-65 |68.2|9.5| -64
Linkbench (75% buffer, 8KB pages, M=updated bytes in whole page)
M=100 M=125
1 28.2 3.7 33 4.6
N 2 35.4 7.3 43 9.2
3 37.9 11.0 47 13.8

Table 3: Fraction of update I0s performed as IPA
[%] (in black), space overhead (in red) [%], and re-
duction in erases per host write [%)] (in blue) for dif-
ferent N x M schemes under TPC-C and LinkBench.

in less out-of-place writes the over-provisioning area is pop-
ulated much slower, which postpones the expensive merge
operations for a longer period. Consequently, the size of the
over-provisioning area can be reduced. Therefore, the space
overhead due to the delta-record area may be compensated
by lower over-provisioning.

IPA Advisor. An IPA advisor automates the choice of
the appropriate M, N and V values [17], letting the DBA
weight the general optimization goals: (i) performance (for
buffer size < 50% depending on the workload and the data
size); (ii) longevity — larger [N x M| result in less erases and
page migrations; (iii) space consumption — effective cost/GB.
The IPA advisor is based on a background DB log-file profil-
ing mechanism, analyzing the current workload at run-time.
This is possible since the DB-log contains all information
regarding update sizes, frequencies or skew. In addition,
under NoFTL, we can compute these per DB-Object. The
newly computed [N xM] configurations determine the size
of the delta-record area and can only be applied offline.

Legend. The performance results on both, OpenSSD
Jasmine and the Flash emulator, are presented in Tables
4 - 10 and Figure 6. In Tables 6, 7, 8, 9, 10 the [0x0 Ab-
solute] columns show the absolute values for experiments
without In-Place Appends. Additionally, in Tables 6 and 8
the columns [2x N Absolute pSLC/odd-MLC] present the ab-
solute values for experiements with IPA on OpenSSD using
pSLC or odd-MLC mode. The columns [N x M Relative [%]]
show the relative improvement of IPA with [N x M] over the
corresponding [0x0 Absolute]. The first row [Out-of-Place
Writes vs. In-Place Appends] in Tables 6, 7, 8, 9, 10 shows
the ratio of out-of-place writes vs. In-Place Appends among
all DBMS write requests for each particular scheme (not a
relative change to the traditional approach, as the column
names may suggest).

DB I/0O Write Amplification. This type of write am-
plification (see Figure 1.d) is caused by the DBMS, since it
performs writes in page-granularity, even if only a few bytes
are modified on a page. By performing delta-writes in delta-
record-granularity using the format described in Section 6.1
this write amplification can be reduced up to 2.8x under
typical OLTP workloads (see Table 4). The detailed results
for LinkBench with different buffer sizes 20% - 90% are pre-
sented in Table 5. The write amplification was calculated as

Gross_-Written_Data

follows: Write Amplification = Net_Changed_Data




Benchmark | TPC-B (M=4) | TPC-C (M=3) | LinkBench (M=125) 0x0 2x3 2x3 2x3 2x3
Buffer Size 75% 90% 75% 90% 75% 90% Absolute | Absolute | Relative | Absolute | Relative
IPA2M] | 2.03 | 200 | 1.95 | 189 | 1.71 1.66 : PSLC |pSLC pe| 0dd-MLC |oddMLC 1x)

IPA [3*M] 283 | 277 | 254 | 247 | 1.83 1.75 fr"‘_‘l‘,‘;;f::'f:p‘é"r:z? LS 49/51 70/30
Host Reads 49773356390 032| +28 |5671727  +14

Table 4: Write amplification reduction (z times) un- Host Writes 1347515/1768552] +31 [1524552]  +13
der TPC-C/-B and LinkBench: traditional approach GC Page Migrations 422753 | 79718 | -81 | 230497 -45
(no IPA [0x0]) vs. [2xM] and [3xM] schemes. o Feee EM 2862 | -60 [EESIS1Y £y
g:rga Jlgedors 03137 | 0.0451 | -86 | 0.1512 52

NxM GC Erases per Host Write| 0.0053 | 0.0016 -70 0.0025 53

1x100 | 1x125 | 2x100 | 2x125 | 3x100 | 3x125 Transactional Throughput 25 37 +46 28 +11

Space overhead [%)] 3.67 | 459 | 7.35 | 9.18 | 11.02 | 13.77

Reduction of _ (20% 167 | 1.74 | 2.12 | 2.27 | 242 | 265
DBMS write | & |50%  1.54 | 163 | 1.84 | 2.02 | 2.01 | 2.28
amplification| 2 /75% 1.38 | 148 | 1.53 | 1.71 | 1.59 | 1.83

] 90%| 1.35 | 1.45 | 147 | 166 | 152 | 175

Table 5: Space overhead and reduction of DBMS
write amplification in Linkbench (MySQL InnoDB).

Where Gross_Written_Data equals Host_WritesxPage_Size
(without In-Place Appends, [0x0]), while for [NV x M| scheme
it equals (Out_of_Place_WritesxPage_Size)+(Delta_Writes*
Delta_Record_Size).

0x0 2x4 2x4 2x4 2x4
Absolute | Absolute |Relative| Absolute | Relative
PSLC | pSLC [%]| odd-MLC |odd-MLC [%]

B
Host Reads 3779926|5567683| +47 (4902012 +30
Host Writes 2028 626/3054292| +51 2395514 +18
GC Page Migrations 605047 | 152973 -75 316 128 -48
GC Erases 15 839 7238 -54 7 745 -51
S:?ﬁ B 02983 | 00501 | -83 | 0.1320 -56
GC Erases per Host Write| 0.0078 0.0024 -70 0.0032 -59
Transactional Throughput 260 383 +48 316 +22

Table 6: TPC-B benchmark on OpenSSD: tradi-
tional approach (no IPA [0x0]) vs. [2x4] scheme in
modes pSLC and odd-MLC.

Buffer 10% Buffer 20%

0*0 2x4 3x4 0*0 2x4 3x4

Absolute |Relative | Relative | Absolute | Relative | Relative
[%] [%] [%] [%]

ﬁ‘_‘;g;"jf:p‘g’;‘(‘fss W 33/67 | 24176 35/65 | 25/75
Host Reads (4KB) 61805 479| +33 +44 |55028 782 +37 | +47
Host Writes (4KB) 34 652 703| +32 +41 |34784847| +32 | +43
GC Page Migrations 38374571 -48 -58 |37920807| -42 -52
GC Erases 1045622 | -55 -64 | 1040622 | -51 -59

GC Page Migrations
per Host Write

GC Erases per Host Write| 0.0302 -66 -75 0.0299 -63 -71
Response [READ I/O_(4KB) 2.43 46 | -52 2.64 41 | -50
Time [ms] \WWRITE 1/O (4KB) |  0.70 -34 | -40 0.69 -30 | -41
Transactional Throughput| 4956 +31 +41 5223 +34 | +42

1.1074 -61 -70 1.0902 -56 -67

Table 7: TPC-B on Flash Emulator: traditional ap-
proach (no IPA [0x0]) vs. [2x4] and [3x4] schemes.

On-Device Write Amplification. In-Place Appends
allow up to N updates to the same Flash page without

Table 8: TPC-C benchmark on OpenSSD: tradi-
tional approach (no IPA [0x0]) vs. [2x3] scheme in
modes pSLC and odd-MLC.
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M 1x100 m 1x125 © 2x100 m 2x125 m 3x100 = 3x125
60

0

Buffer 20% Buffer 50% Buffer 75% Buffer 90%

nN
o

=
o

% of all update I0s issued by the DBMS
ey
S}

Figure 6: Fraction of update IOs performed as in-
place appends in Linkbench (MySQL InnoDB).

performing out-of-place writes. The first row [Out-of-Place
Writes vs. In-Place Appends] in Tables 6, 7, 8, 9, 10 and on
Figure 6 shows that 30% to 76% of the DBMS writes (/Host
Write]) can be performed as In-Place Appends, throughout
all the workloads both on OpenSSD and the Flash emula-
tor. This reduces the number of invalidated Flash pages,
allowing the garbage collector to perform space reclamation
less frequently (see Figure 1.f). In other words, for the same
amount of DBMS write requests ([Host Write]) the garbage
collector performs less page migrations and erase operations.
Thus, under TPC-B we observed a reduction of [GC Page
Migrations per Host Write] of up to 83% on OpenSSD and
up to 70% on the Flash emulator; for TPC-C 86% and 62%
respectively. The reduction of /[GC Erases per Host Write]
was 70%/75%, 70%/62% on OpenSSD/emulator for TPC-B
and TPC-C respectively. The higher performance gain of
In-Place Appends on the OpenSSD compared to the Flash
emulator is caused by the 1.5% buffer, as well as, the limited
parallelism of the OpenSSD board (see Section 8.1).

IPA with different DBMS buffer sizes. We varied
the DBMS buffer size between 10% and 90% of the initial
DB-size (Table 9). Naturally, the transactional throughput
increases with larger buffer sizes. Furthermore, the relative
performance improvement due to IPA decreases, and with
large buffer sizes (75% and 90%) it practically disappears.
However, TPA has an unchanged positive effect on write-
amplification and longevity of Flash SSD even with large
buffers: consider the rows [GC Page Migrations per Host
Write] and [GC Erases per Host Write] in Table 9. The



Buffer 10% Buffer 20% Buffer 50% Buffer 75% Buffer 90%
0x0 Abs. | 2x3 Rel. [%] | 0x0 Abs. | 2x3 Rel. [%] | 0x0 Abs. | 2x3 Rel. [%] | 0x0 Abs. | 2x3 Rel. [%] | 0x0 Abs. | 2x3 Rel. [%]
Out-of-Place Writes vs. IPAs 51/49 51/49 54/46 56/44 56/44
Host Read I/Os (4KB) 44190546| 2093 [25120600| 25.89 3 275 550 11.44 614 639 4.43 279 258 0.44
Host Write 1/0s (4KB) 36735568| 1573  |39530323| 1625 |51570434 9.41 62 627 983 9.81 64 345 377 0.54
GC Page Migrations 25648523| -38.39 |27886888| -36.00 [37521497| -31.74 |46874908| -29.08 |47558375| -28.51
GC Erases 939 888 -40.83 1018624 | -39.51 1357349 | -37.67 1676 376 -34.83 1713 844 -33.77
GC Page Migrations per Host Write  0.6982 -46.76 0.7055 -44.95 0.7276 -37.61 0.7485 -35.42 0.7391 -28.89
GC Erases per Host Write 0.0256 -48.87 0.0258 -47.97 0.0263 -43.03 0.0268 -40.65 0.0266 -34.13
Response| READ /0 (4KB) 0.45 -29.05 0.77 -31.60 3.90 -31.07 8.44 -21.34 9.10 -2.89
Time [ms] WRITE I/O (4KB) 0.53 -22.01 0.53 -21.36 0.53 -19.17 0.54 -17.88 0.53 -15.38
Transactional Throughput 865 15.33 1001 15.42 1480 6.28 1984 1.22 2191 0.21

Table 9: TPC-C: traditional (no IPA [0x0]) vs. [2x3] schemes with large buffer pools (eager eviction).

Buffer 10% Buffer 20% Buffer 50% Buffer 75% Buffer 90%
0x0 Abs. [2x10 Rel. [%]| 0x0 Abs. [2x10 Rel. [%]| 0x0 Abs. [2x30 Rel. [%]| 0x0 Abs. [2x40 Rel. [%]| 0x0 Abs. [2x40 Rel. [%]
Out-of-Place Writes vs. IPAs 41/59 44/56 51/49 63/37 67/33
Host Read 1/0s (4KB) 59 417 771 2228 [39383139] 16.29 4462 332 5.33 676 580 0.50 265 543 3.19
Host Write 1/Os (4KB) 20559808/ 19.68 |28591074| 20.16 11 767 036 4.43 8 486 996 3.46 8 802 867 3.25
GC Page Migrations 19513382 -55.59 [16595099| -40.27 5027 818 -30.98 2 877 442 -20.07 2982 080 -19.52
GC Erases 731 549 -53.95 670 807 -46.07 227 215 -36.13 142 339 -21.63 148 312 -19.10
GC Page Migrations Per Host Write | 0.6601 -62.89 0.5804 -50.29 0.4273 -33.91 0.3390 -22.75 0.3388 -22.06
GC Erases per Host Write 0.0247 -61.53 0.0235 -55.12 0.0193 -38.84 0.0168 -24.25 0.0168 -21.65
Response|READ 1/0 (4KB) 0.24 -32.08 0.30 -19.46 0.41 -16.95 0.43 -19.30 0.64 -11.53
Time [Ms]\WRITE I/0 (4KB) 0.51 -28.27 0.49 -21.56 0.43 -12.33 0.43 -7.87 0.56 -8.21
Transactional Throughput 915 15.37 1291 6.96 2220 3.26 2360 1.06 2259 3.67

Table 10: TPC-C: traditional (no IPA [0x0]) vs. [2xM] schemes with large buffer pools (non-eager

garbage collection overhead is reduced by 29%-43% in the
experiments with buffer sizes 50%-90%.

Although with increasing buffer sizes the number of [Host
Read 1/0s] (Table 9) decreases rapidly, the number of [Host
Write 1/0s] increases. Why is that? Why does the DBMS
write even with 90% buffer size? Both InnoDB and Shore-
MT implement eager buffer eviction strategies: flushing dirty
pages eagerly when a threshold is reached (e.g. 12.5% hard-
coded in Shore-MT). In addition, InnoDB and Shore-MT
employ an eager log-space reclamation strategy (e.g. when
25%-50% of the log-space is consumed in Shore-MT). The
combination of both strategies aims at reducing recovery
times [33] and alleviating the checkpoint-overhead. Thus,
larger buffers result in a higher throughput and consequently
in more dirty pages in the buffer and larger log-files. The
background writers flush therefore more dirty (cold) pages
to stable storage. Modern main-memory DBMSs implement
different strategies [12, 26], targeting another tradeoff be-
tween throughput and recovery times.

To analyze the update accumulation effects with large
buffers, we turned off the eager eviction and eager log-space

reclamation by setting extreme values for the respective thresh-

olds in Shore-MT (75% and 100% respectively). Thereby,
we observe significant reductions of [Host Write I/0s] with
increasing buffer sizes (Table 10) as well as clear update ac-
cumulation effects (Table 11 and Figure 9 in Appendix A).
For instance, with Buffer 10%, 80% of all updates change
less than 6 bytes, while with Buffer 90% only 4% of all up-
dates do so. To account for the update accumulation effects,
larger values of M are needed. Even, with configuration
such as [2x40] we observe that with 90% buffer and “non-
eager” eviction strategy at least 33% of all host writes can be
performed as in-page appends, reducing the overhead of the
garbage collection by more than 20% (Table 10). Yet, due to

eviction).

the large number of dirty pages and log volume the recovery
times in those experiments increase by 4x on average.

Number of Percentiles
changed bytes
(net data) Buffer 10% | Buffer 20% Buffer 50% | Buffer 75% Buffer 90%
<3 61-th 34-th 1-th 1-th 1-th
<6 80-th 64-th 5-th 5-th 4-th
<10 88-th 83-th 14-th 13-th 10-th
<30 89-th 88-th 74-th 58-th 60-th
<40 90-th 89-th 76-th 71-th 72-th

Table 11: TPC-C Update-sizes (non-eager eviction).

Under LinkBench we increase the M to 100 and 125, which
results for N = 3 in about 14% higher space consumption,
but allows to reduce the DBMS write-amplification 1.75x -
2.65x in experiments with buffer sizes 20% - 90% (Table 5).

I/O and Transactional Response Times. It is well
known that the garbage collector overhead leads to unpre-
dictable performance degradation on all Flash SSDs [10],
since it interferes with host I/Os. By reducing the number
of out-of-place writes and therefore the number of erases,
response times of host reads and writes are improved. Lines
[READ 1/0] and [WRITE I/0O] in Tables 7 and 9 show
the average DBMS 1/0 latencies without In-Place Appends,
and the relative improvement for the [N x M] schemes (with
IPA). Clearly, the latency of [READ 1/0O 4KB] improves by
up to 52% for TPC-B (in experiments with 1% buffer and
on OpenSSD even more than 60%), by up to 32% for TPC-
C. The maximum [WRITE 1/0 4KB] latency improvements
are 41% and 28% for TPC-B and TPC-C respectively.

Please consider the differences in response times for dif-
ferent buffer sizes. Those are due to an inherent tradeoff
between waiting time (I/O contention for Flash) and exe-
cution time (GC overhead). On the one hand, larger buffer



sizes allow for caching more hot pages, which improves the
[Transactional Throughput]. The larger the number of sub-
mitted transactions, the higher the I/O rate, which increases
the contention on 16 chips of the emulated Flash storage. As
a result the average I/0 waiting time as well as the resulting
response time increase. On the other hand, IPA improve ez-
ecution time of write I/Os, by reducing the on-device write
amplification and the GC activity. Faster on-device process-
ing of write requests results in a higher I/O throughput and
decreases waiting times of host I/Os.

The lower I/O latencies impact the transactional response
times. Since Shore-MT uses a steal /no-force policy the write
requests are performed mainly by the background cleaners
and checkpointing threads. Therefore, the transactional re-
sponse times are influenced primarily by the [READ I/0]
latencies. The impact varies, depending on the I/O profile of
each transaction (write intensive, read-only) and its working
set. Under TPC-B the response time of the Account Update
transaction is decreased by roughly 30%. Under TPC-C the
decrease varies between 3% and 23%.

Last but not least, the decreased response times of trans-
actions allow the DBMS to perform more transactions in the
same measurement interval. The line [Transaction Through-
put] shows that the utilization of In-Place Appends results in
up to 48%/42% and 46%/15% higher transactional through-
put on OpenSSD/emulator under TPC-B and TPC-C.

Note, the improvement in all those values (response times
and throughput) is the result of the reduced garbage collec-
tor overhead. It depends strongly on the parameters of Flash
memory, such as size of over-provisioning and address map-
ping scheme. Throughout all experiments we used 10% over-
provisioning area and a page-level mapping scheme, which is
the most efficient for OLTP workloads. Typical SSDs have
usually 7%-10% over-provisioning and use hybrid address
mapping schemes. In those systems the positive effect of
the reduced overhead of the garbage collector on the overall
system performance is supposed to be higher.

Longevity of Flash Storage. Besides the improved
system performance, In-Place Appends have a huge impact
on the longevity of Flash storage. The wear-out limits of
modern Flash memories (100.000 Program/Erase cycles for
SLC, 10.000 for MLC, and 4.000 for TLC Flash) impact
enterprise systems with OLTP-like workloads. The row la-
beled /[GC Erases per Host Write] in Tables 6, 7, 8, 9, 10
indicates that different [N x M] schemes reduce the average
number of erases per write request by up to 75% and 70%
under TPC-B and TPC-C respectively. Consequently, the
lifetime of Flash memories is significantly prolonged.

9. CONCLUSIONS

Under traditional update-intensive workloads, small up-
dates dominate the write behavior: more than 70% of all
updates change less than 10 bytes across all TPC OLTP
benchmarks. These updates are performed in-place on the
original database page and due to their random nature they
result in random writes in page-granularity. Thus, a modifi-
cation of less than 10 bytes net, yields an expensive write of
a whole 4KB or 8KB database page back to stable storage.
The result is a major overhead on Flash storage and a write
amplification of several hundred times. The root cause are
outdated architectural assumptions such as: (i) the align-
ment of the database unit of I/O to a page or (ii) the use of
the HDD-tailored block-device interface to perform I/0.

In this paper we propose an approach that transforms
those small in-place updates in small delta-records on the
original page that are written out as In-Place Appends to
Flash storage. IPA makes use of the commonly neglected
fact that Flash memories can natively handle those as phys-
ical page appends through the use of various low-level tech-
niques such as ISPP, given the charge of individual NAND
cells is always increasing. Such techniques help avoiding ex-
pensive erase or out-of-place write operations. To be able
to take advantage of those small appends, we propose ex-
tending the traditional NSM page-layout with a delta-record
area that can host small updates. If only few bytes change
we compute the update deltas. These are then appended
to delta-records in the delta-record area, leaving the rest
of the page unchanged. Thus, when the page is written
back to storage only the new delta-records should be ISPP-
programmed on the original Flash page, minimizing GC
overhead and expensive erases. We also describe how DBMS
modules such as buffer or storage manager must be adapted
to handle operations on the modified page format. In addi-
tion, we propose an [N X M| scheme to control: (a) the space
allocation on database pages and sizing of the delta-records;
(b) the write behavior; (c) buffering and fetching operations.

The experimental evaluation is performed under Shore-
MT, real Flash hardware and various update-intensive work-
loads such as standard TPC workloads. It leads to the
following results. First, 33%-85% reduction in erase oper-
ations. Furthermore, we observe approximately the same
reduction in garbage collector write-overhead. Hence, the
proposed approach doubles the longevity of Flash devices
by reducing wear and yields better performance. Second,
15%-60% lower read and write 1/O latencies. Third, up to
45% higher transactional throughput. Fourth, better uti-
lization of physical Flash space and the reduction of the
over-provisioning area size, under unchanged database per-
formance. Fifth, IPA can be selectively applied to individual
DB objects, depending on their update properties. We pro-
pose an IPA advisor that can suggest appropriate values for
N, M and V for the current workload, minimizing the addi-
tional DBA complexity and the number of required knobs.
Sixth, implementation and evaluation are performed on real
hardware as well as on a Flash emulator. IPA can be realized
on traditional SSDs, by extending the block-device interface
and the on-board controller functionality at the cost of lower
performance compared to IPA under NoFTL. However, on-
device write-amplification and longevity improvements com-
pared to conventional SSDs will still be significant. Seventh,
compared to In-Page Logging [21] IPA performs up to 62%
less reads and writes and up to 74% less erases on a range
of workloads. Last but not least, the write amplification is
reduced 2x-3x. IPA can be used in combination with ISPP
on a wide range of Flash and SSD devices, if native Flash
and a technology similar to NoFTL regions are supported.

Acknowledgements

The authors are grateful to the anonymous SIGMOD review-
ers for the insightful comments, which helped to significantly
improve the quality of the presentation. We also like to
thank Sang-Won Lee and his group for providing the original
IPL code and Goetz Graefe for his remarks on earlier drafts
of this paper. This research was supported under grants
DFG "Flashy-DB” and "Software Campus” (011S12054).



10. REFERENCES

[1] The openssd project. http://www.openssd-project.
org/wiki/The_OpenSSD_Project, 2014.

[2] Samsung v-nand technology.
http://www.samsung.com/us/business/oem-solutions/
pdfs/V-NAND_technology_WP.pdf, 2014.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,
M. S. Manasse, and R. Panigrahy. Design tradeoffs for
ssd performance. In Proc. USENIX ATC’08.

[4] S. Aritome. NAND flash memory technologies. IEEE
Press series on microelectronic systems. 2016.

[5] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and
M. Callaghan. Linkbench: A database benchmark
based on the facebook social graph. In Proc.
SIGMOD’13.

[6] M. Balakrishnan, D. Malkhi, V. Prabhakaran,

T. Wobber, M. Wei, and J. Davis. Corfu: A shared log
design for flash clusters. In Proc. USENIX NSDI’12.

[7] B. Bhattacharjee, M. Canim, M. Hamedani, K. Ross,
and A. Storm. Supporting transient snapshot with
coordinated /uncoordinated commit protocol. US
Patent 14/748,438, 2016.

[8] P. Bonnet and L. Bouganim. Flash device support for
database management. In Proc. CIDR’11.

[9] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai.
Program interference in mlc nand flash memory:
Characterization, modeling, and mitigation. In Proc.
1CCD’13.

[10] F. Chen, D. A. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In Proc.
SIGMETRICS’09.

[11] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W.
Lee, and H.-J. Song. A survey of flash translation
layer. J. Syst. Archit., 55(5-6):332-343, 2009.

[12] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson,

P. Mittal, R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: Sql server’s memory-optimized oltp engine.
In Proc. SIGMOD, 2013.

[13] R. Gottstein, I. Petrov, and A. Buchmann. Append
storage in multi-version databases on flash. In Proc.
BNCOD’13.

[14] J. Gray and P. Shenoy. Rules of thumb in data
engineering. In Proc. ICDE’00, pages 3—10, 2000.

[15] S. Hardock, I. Petrov, R. Gottstein, and
A. Buchmann. In-place appends for real: Dbms
overwrites on flash without erase. In Proc. EDBT’17.

[16] S. Hardock, I. Petrov, R. Gottstein, and
A. Buchmann. Noftl: Database systems on ftl-less
flash storage. In Proc. VLDB’13.

[17] S. Hardock, I. Petrov, R. Gottstein, and
A. Buchmann. Selective in-place appends for real:
Reducing erases on wear-prone dbms storage. In Proc.
ICDE’17.

[18] S. Hardock, I. Petrov, R. Gottstein, and
A. Buchmann. Noftl for real: Databases on real native
flash storage. In Proc. EDBT, pages 517-520, 2015.

[19] S. Hardock, I. Petrov, R. Gottstein, and
A. Buchmann. Revisiting dbms space management for
native flash. In Proc. EDBT, 2016.

[20] W.-H. Kang, S.-W. Lee, B. Moon, G.-H. Oh, and
C. Min. X-ftl: Transactional ftl for sqlite databases. In
Proc. SIGMOD’13.

[21] S.-W. Lee and B. Moon. Design of flash-based dbms:
An in-page logging approach. In Proc. SIGMOD’07.

[22] S. T. Leutenegger and D. Dias. A modeling study of
the tpc-c benchmark. In Proc. SIGMOD’93.

[23] S.-P. Lim, S.-W. Lee, and B. Moon. Faster ftl for
enterprise-class flash memory ssds. In Proc. SNAPI’10.

[24] Y. Lu, J. Shu, and W. Zheng. Extending the lifetime
of flash-based storage through reducing write
amplification from file systems. In Proc. FAST’13.

[25] D. Ma, J. Feng, and G. Li. A survey of address
translation technologies for flash memories. ACM
Comput. Surv., 46(3):36:1-36:39, 2014.

[26] N. Malviya, A. Weisberg, S. Madden, and
M. Stonebraker. Rethinking main memory oltp
recovery. In Proc. ICDE, 2014.

[27] R. Micheloni, L. Crippa, and A. Marelli. Inside NAND
Flash Memories. Springer, 2010.

[28] R. Micheloni, A. Marelli, and K. Eshghi. Inside Solid
State Drives (SSDs). Springer, 2012.

[29] G.-J. Na, B. Moon, and S.-W. Lee. In-page logging
b-tree for flash memory. In Proc. DASFAA’09.

[30] Y. Ou, J. Xu, and T. Hérder. Towards an efficient
flash-based mid-tier cache. In Proc. DEXA’12.

[31] X. Ouyang, D. W. Nellans, R. Wipfel, and D. Flynn.
Beyond block i/o: Rethinking traditional storage
primitives. In Proc. HPCA’11.

[32] M. Sadoghi, K. A. Ross, M. Canim, and
B. Bhattacharjee. Exploiting ssds in operational
multiversion databases. VLDB, 25(5):651-672, Oct.
2016.

[33] C. Sauer, G. Graefe, and T. Hérder. An empirical
analysis of database recovery costs. In RDSS, 2014.

[34] K.-D. e. a. Suh. A 3.3 v 32 mb nand flash memory
with incremental step pulse programming scheme. In
Proc. ISSCC"95.

[35] C. Yu, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Crista,
O. S. Unsal, and M. Ken. Error analysis and
retention-aware error management for nand flash
memory. Intel Tech. Journal, 17(1):140 — 164, 2013.

APPENDIX
A. ANALYSIS OF OLTP BENCHMARKS

The statistics presented in Figures 7, 8, 9 and 10 were col-
lected over the 2-hour (TPC-C/-B) and 4-hour (LinkBench)
duration of the benchmarks, and show the cumulative distri-
bution of update-sizes in bytes. For TPC-B and TPC-C the
update-sizes correspond to net data (tuple data) changes,
while for LinkBench they correspond to gross data changes
(body + metadata). In all benchmarks more than 93% of
all write 1/Os performed by the DBMS are updates to exist-
ing DB pages, and the remaining (1%-7%) are appends to
new pages. Due to the clear dominance of update I/Os we
excluded the latter (appends to new pages) from the statis-
tics, thus 100% of the Y-axes on the figures in the following
sections cover solely update I/Os.

A.0.1 TPC-B Benchmark



Although TPC-B is officially obsolete its workload profile
can be found in real world systems even nowadays. The
benchmark has only one transaction, which simulates a de-
posit or withdrawal to/from some bank account. The trans-
action modifies all four tables in the TPC-B schema and is
thus update-heavy. In three out of four tables the transac-
tion changes only one numeric attribute of a single tuple,
while a new tuple is appended to the fourth table.
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Figure 7: CDF of update-sizes in TPC-B in net data.

The distribution of update-sizes in TPC-B is shown in
Figure 7. 50% - 90% of all update I/Os change only 4
bytes of net data per page, while more than 80% change
8 bytes or less. A short analysis of the database schema
and transaction profile explains this. The Account_Update
transaction appends one tuple to the History table (about
20 bytes net), and it modifies a numeric attribute value (4
bytes net) in a single tuple in each of the other three ta-
bles. Therefore, upon commit four pages are updated: the
net data modified on 3 of them is at most 4 bytes, whereas
in the forth page it amounts to 20 bytes. Since the cardi-
nality of Branch and Teller tables is significantly smaller
compared to the Account table (1:10:100000 respectively),
those are usually completely buffered over the benchmark
duration. Under the steal/no-force buffer policy employed
by Shore-MT, pages of these tables are flushed to stable stor-
age predominantly by background page cleaners and during
checkpoints. Due to its cardinality the History table plays
an insignifcant role, since it is a kind of ”logging” table, which
is seldom queried. All write I/Os to the History table are
therefore appends to new pages (about 2% of all write I/Os).

Thus, the lion’s share of update I/Os goes to the Account
table, and in most cases those updates change only 4 bytes
of net data, i.e. changes of only one transaction - one nu-
meric attribute (Account_Balance += A). Due to the large
cardinality and random access pattern only a small num-
ber of Account’s pages can accumulate updates of multiple
transactions, while in buffer.

A.0.2 TPC-C Benchmark

The TPC-C benchmark emulates an order-entry environ-
ment. The update-size statistics (see Figures 8, 9) show that
about 70% of all update I/Os change less than 6 (eager evic-
tion) and 40 (non-eager eviction) bytes of net data per page.
According to previous research [22] and our own analysis,
in the TPC-C benchmark the STOCK table clearly domi-
nates the write behavior. The table is updated only by the
NewOrder transaction (the backbone of the workload). Each
NewOrder transaction modifies on average 10 random tuples
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Figure 8: Cumulative distribution of update-sizes in
TPC-C in net data (default eager eviction strategy).
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Figure 9: Cumulative distribution of update-sizes in
TPC-C in net data (non-eager eviction strategy).

in the STOCK table. Three numeric attributes per tuple
are modified: (i) SSQUANTITY += Ay; (i1) SSYTD +=
Asz; (111) SSORDER_CNT += 1 or SREMOTE_CNT +=1.
According to the specification Aj > are usually less than
10, therefore in all three numeric fields typically only the
least significant byte is changed. Therefore, each NewOrder
transaction changes on average 10 data pages (due to the
randomness of selected rows), modifying 3 bytes net on each
page. Moreover, updates on the District, Warehouse and
Customer tables modify a single or multiple numeric fields
(except for 10% of Customers where also the C_DATA at-
tribute is changed).

The high access skew of the workload (75% of accesses
go to 20% of data [22]) allows for efficient buffering of hot
pages. Thus, given a sufficient buffer size (e.g. 20%) the
majority of write I/Os are caused by eviction of cold dirty
database pages from the buffer, which rarely can accumulate
multiple updates while being cached. Hence, the dominance
of small-sized write I/Os.

A.0.3 LinkBench Benchmark

LinkBench [5] is a benchmark that emulates a social net-
work workload. It was designed in 2013 by the Database
Enginieering Team at Facebook for the purpose of evalua-
tion and testing of DBMSs used for storing the social graphs
(e.g. Facebook production data). The development of the
workload was based on the comprehensive analysis of the
large-scale social graph workloads captured from the pro-
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Figure 10: CDF of update-sizes in LinkBench.

duction databases at Facebook. The data scheme consists
of three relations representing objects (nodes in the graph),
associations (directed edges between nodes) and the number
of associations. The workload is read-intensive (2.19:1 ratio
of read to write queries) and is generated by executing the
mix of ten operations on the graph.

Interestingly, the average payload size of the objects is less
than 90 bytes, while the one of associations is less than 12
bytes (almost half of the associations do not have payload at
all). Over a third of all updates on objects and associations
do not change the payload size, and modify only one or few
numeric fields (e.g. timestamp, version, etc.). The majority
of the remaining update queries change the payload sizes
only slightly. The cumulative distribution of update sizes is
presented in Figure 10. About 70% of all updates change
less than 100 bytes on 8KB DB-pages in experiments with
buffer sizes 20%, and less than 200 bytes in experiments with
larger buffer sizes (50%, 75%, 90%)

B. FORMULAE FOR IPL VERSUS IPA

The following expressions hold for the settings (Flash mem-
ory, DBMS) from the original IPL paper [21]. The [I/O
Write Amplification] for IPL was calculated as:

#merges x 15 x 4io + #imlog_full * lio
+ F#£page_evictions * lio

WA-IPL = #page_evictions * 4io

Here, each merge operation results in writing out 15 8KB
DB-pages, each resulting in programming 4 2KB physical
Flash pages. When the in-memory per-page log-buffer gets
full (4mlog_full) it is written out (partial write of 512B has
the same latency as a write of a whole 2KB Flash page).
Similarly, when the DB-page is evicted from the buffer the
corresponding log buffer is flushed. The number of those
2KB I/Os is compared to the single I/O the DBMS without
IPL is assumed to perform (writing out 8KB logical page
corresponds to 4 writes of 2KB chunks). The [I/O Read
Amplification] for IPL is equal to:

#page_fetches x 2 x 4io + #merges * 16 x 4io)
#page_fetches x 4io
Whenever the DBMS under IPL fetches the 8KB logi-

cal page, in addition to reading this page from Flash (four
physical Flash pages) the whole log region (8KB) on the

RA_IPL =

same erase unit must also be read. Therefore, the read load
doubles. Furthermore, each merge operation requires read-
ing and transmitting to the host (for merging purpose) the
complete erase unit (i.e. 15 logical pages and log region).
The number of erases equals the number of IPL merges.
For IPA the corresponding formulas are described below.

WA_IPA = (

H#write_deltas * lio + #out_of_place_writes x 4io+
#gc_page_migrations * 4io

#page_evictions * 4io

Upon eviction of a dirty page from the buffer, depending
on the number of changed bytes the DBMS using In-Place
Appends writes either the page as a whole (in an out-of-place
manner on Flash) or only the delta record will be appended
to the original Flash page. The size of the delta record is
less than 100B, however we calculate here one 2KB I/0O. The
overhead of the traditional garbage collector is measured in
the number of performed page migrations.

#page_fetches x 4io + #gc_page_migrations * 4io

A_IPA =
f #page_fetches * 4io

As already mentioned, in case of IPA no additional read
I/Os are required, when a logical DB-page is fetched. In
order to migrate the valid pages from the victim block the
garbage collector needs to read them first. Note, however,
that in case of IPA the read and write I/O overheads caused
by the garbage collector are internal Flash-device I/Os, i.e.
no data transfer to or from the host is happening. Con-
versely, under the IPL approach to merge one erase unit its
whole content must be first read into the host, then merged
and then transferred to the Flash again, which increases the
delay caused by merge operations.

C. IPA ONSLC,MLC AND 3D NAND

In-Place Appends can be applied to different types of Flash
memory, namely SLC, MLC, eMLC and TLC in 8D NAND
organizations. The specifics of those Flash types are de-
scribed briefly below.

C.1 In-Place Appends on SLC Flash

IPA can be applied without specific limitations to SLC
Flash. The reason is that the difference (distance) between
different threshold voltages (indicating different logical bit-
codes of the Flash cell: 1 and 0) is large enough to compen-
sate small deviations. Such deviations may appear due to
program interference (parasite capacitance-coupling), while
(re-)programming the Flash-page (appending the delta-record).
Some SLC Flash manufactures allow performing so-called
partial writes, i.e. a Flash-page can be programmed incre-
mentally in equally sized chunks (usually 512B). Note that
IPA is not based on SLC partial writes. In contrast to par-
tial writes, IPA allows to flexibly vary the number (N) and
the size (M) of programmed/appended chunks to the Flash-
page. Furthermore, IPA can be applied on other types of
Flash memory (MLC, 3D).

C.2 In-Place Appends on MLC Flash

MLC modes. For MLC Flash there exist two possibili-
ties to apply IPA: either the pSLC or the odd-MLC modes.
MLC Flash can be dynamically configured in the so-called
pseudo-SLC' (pSLC) mode, for which the Flash capacity is



reduced by half since only LSB-pages® are used. The bene-
fit of using IPA in pSLC mode is twofold: (i) the GC over-
head is reduced more than twice; and (ii) I/O latencies are
lower since the programming time of LSB pages is signifi-
cantly less than that of MSB-pages. Under the odd-MLC
mode, the whole MLC Flash capacity is utilized, however,
IPA are only applied to LSB-pages® (odd numbered pages),
whereas MSB-pages® (even numbered pages) still need to be
programmed in standard out-of-place manner.

Program Interference Errors. The MLC Flash is more
susceptible to program interference errors than SLC, due to
the shorter distances between different voltage thresholds.
To minimize those errors MLC manufacturers suggest pro-
gramming Flash pages within a block in an incremental or-
der (in-order programming). This order ensures that the
cells on a particular wordline can only be influenced by an
interference from programming a MSB-page on the successor
wordline [9].

TPA does not cause program interference errors on MLC
Flash in pSLC mode. Small updates on MLC Flash can
cause program interference errors, however they are solved
as follows by IPA on MLC Flash in odd-MLC mode.

Initially, all pages are programmed in order, hence there is
no extra programming interference. If now IPA is applied on
a page, an interference can occur on neighboring cells, which
are located on adjacent pages. These are pages that lie on
the predecessor and successor wordlines. For example, if the
LSB page 59 on wordline WL30 is updated by IPA (see Fig-
ure 2), interferences can occur on pages on WL29 (LSB page
57 and MSB-page 60) and WL31(61, 64)°. Tt is very impor-
tant to emphasize that such interferences impact ONLY the
delta-record areas not the page body®. What’s more, those
voltage shifts in cells of delta-record areas of LSB-pages do
not result in bit errors. This is because by reading LSB pages
the Flash controller differentiates only between two voltage
thresholds (having large distance between them). In con-
trast, bit-errors are possible in delta-record areas of neigh-
boring MSB-pages, since there are four different thresholds.
However those are simply ignored, since IPA is not applica-
ble for MSB-pages, i.e. MSB-pages are always written out
as a whole in a standard out-of-place manner. Therefore, a
small update in the reserved area of page 59 does not incur
bit errors to the reserved areas of pages 57 and 61, but does
so on pages 60, 64, which are simply ignored.

Efficiency of pSLC and odd-MLC. Even though in
0dd-MLC mode In-Place Appends are applied only to half of
the physical Flash pages, its performance is not necessarily
twice as low as on SLC Flash or in pSLC mode. If the DB
page size is larger than a physical page, then the DB page
comprises multiple adjacent physical pages (MSB and LSB).
The efficiency of odd-MLC mode is similar to SLC or pSLC
since IPA always go to the physical LSB page. For example,
if the database page size is 16KB (a standard today) and

5 Every wordline on MLC Flash contains two pages an
LSB/odd and a MSB/even page. Thus wordline N (Figure
2) contains the LSB page (2N-1) and the MSB-page (2N+2).
LSB/MSB pages are not shown in Figure 2 since it depicts
SLC Flash.

SThe program interference occurs on neighboring cells
when the current cell is programmed with a certain charge,
i.e. increase of cell’s charge can cause a small voltage shift
on neighboring cells. In other words, whenever no charge is
applied to a cell, there is negligible or no program interfer-
ence

the size of Flash page is 8KB (also the most common case),
then each database page comprises two adjacent physical
pages (MSB and LSB). In this case, IPA can be applied to
all logical DB pages, since all appends are performed on the
LSB pages.

C.3 In-Place Appends on 3D NAND

The 3D NAND is the current trend in Flash memory,
addressing multiple technological issues: minimization and
scaling as well as program interference. First, 3D Flash
architectures allow to increase memory density (and thus
capacity) by adding more layers without shrinking NAND
cells. Second, interference issues are negligible in 3D Flash,

which significantly prolongs the endurance, for instance through

the usage of Flash CTF (Charge Trap Flash). According to
Samsung their 3D V-NAND chips are: ”Bitline Interference
Free” and "Wordline Interference Almost Free” [2]. There-
fore we assume that IPA can be applied using SLC/pSLC or
odd-MLC techniques.

D. OPENSSD JASMINE

The following technical details of the OpenSSD Jasmine
[1] board (Figure 11) need to be pointed out:

Figure 11: OpenSSD Jasmine with MLC Flash [1].

1. Although OpenSSD is said to support SATA NCQ (as
stated in [1]), this support is not implemented by default.
We could not retrofit it with NCQ due to the inability
to obtain the specification of the proprietary controller.
The provided board firmware tries to mitigate this issue
by using write-cache to execute incoming write I/Os in
parallel on different chips. However, without full-fledged
NCQ there is no means to parallelize read I/Os, which
dominate in OLTP workloads. Although the board has
8 dual-die packages and can theoretically execute up to
16 concurrent requests, its effective host-level I/O paral-
lelism equals one I/O at a time.

2. The OpenSSD Jasmine board does not allow to program
the Flash controller and the ECC engine. Furthermore, it
does not provide an access to the OOB area of the Flash
pages. Therefore, we were not able to modify the hard-
ware ECC/EDC implementation. As a workaround this
default implementation was turned off and an adjunct
BCH-ECC was implemented in the DBMS.

3. Due to the 4GB RAM capacity of the dedicated test ma-
chine hosting board the evaluation on OpenSSD has been
performed with a DB buffer size of 1GB (1.5% of DB size).



