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ABSTRACT

Characteristics of modern computing and storage technolo-
gies fundamentally differ from traditional hardware. There
is a need to optimally leverage their performance, endurance
and energy consumption characteristics. Therefore, existing
architectures and algorithms in modern high performance
database management systems have to be redesigned and
advanced. Multi Version Concurrency Control (MVCC) ap-
proaches in data-base management systems maintain mul-
tiple physically independent tuple versions. Snapshot isola-
tion approaches enable high parallelism and concurrency in
workloads with almost serializable consistency level. Mod-
ern hardware technologies benefit from multi-version ap-
proaches. Indexing multi-version data on modern hardware
is still an open research area. In this paper, we provide a sur-
vey of popular multi-version indexing approaches and an ex-
tended scope of high performance single-version approaches.
An optimal multi-version index structure brings look-up ef-
ficiency of tuple versions, which are visible to transactions,
and effort on index maintenance in balance for different
workloads on modern hardware technologies.
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1. INTRODUCTION

Nowadays, Multi-Version Database Management Systems
(MV-DBMS) are widely spread and commonly used in com-
mercial and academia. There are many reasons for appli-
cations storing data in a multi-version manner to keep a
history for temporal querying, e.g. in financial applications
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or software development. Further reasons are based on pro-
viding more parallelism in reading and writing transactions
without losing consistency of data in multi version concur-
rency control (MVCC) and snapshot isolation (SI).

Trends in modern computing and storage technologies are
receiving growing attention within the database research
community. Processing data in modern multi-core proces-
sors (CPU) and graphics processors (GPU) bring benefits in
parallel computing. Furthermore, power efficient and flex-
ible configurable field programmable gate arrays (FPGA)
allow fast processing of huge amounts of data near its stor-
age location and reduce data movement along memory hi-
erarchies. Flash-based storage media like Flash Solid State
Disks (SSD) as well as upcoming non-volatile memories (NV-
RAM) become state of the art in modern memory hierar-
chies. The characteristics of modern storage media differ
from traditional storage media. Read/Write asymmetry, low
latencies, parallelism, out-of-place updates, erases and wear
are the characteristics to address in MV-DBMS algorithms.
There are benefits in writing once sequentially and small
random reads in parallel are almost as fast as sequential
reads. Furthermore, new storage media coexist with tradi-
tional symmetric storage media in complex memory hierar-
chies.

Characteristics of modern hardware match well to multi-
version data and enterprise workloads. An update results in
a creation of a new version. Old versions are retained im-
mutably, so several versions of a data tuple exist. Versions
are stored and processed as independent entities. For the ex-
tra effort of a visibility check, more parallelism is achieved,
because reading transactions are never blocked by writing
transactions. CPUs, GPUs and FPGAs are kept busy and
do not idle. In theory, flash benefits from independent im-
mutable tuple versions. Updates create a new version out-
of-place, so older versions are never changed and have not
to be erased and rewritten on flash, except for garbage col-
lection. As a result, write amplification, erases, wear and
energy consumption are reduced. Several versions can be
read in parallel due to fast parallel reads. [2] optimized
multi-version data placement and invalidation problems, so
that creating new versions result in pure append-only writes
and characteristics of flash are optimally leveraged for multi-
version data in MV-DBMS base tables.

Indexing multi-version data is still an open research area,
considering characteristics of modern hardware. In general,
MV-DBMS use the ubiquitous B*-Tree [8] for indexing data



in a sorted data structure. In MV-DBMS and modern hard-
ware, this approach brings some drawbacks. First, the index
structure has to avoid false negatives, for which reason ev-
ery version of a tuple is maintained as an index record. So,
the dataset of a BY-Tree in a MV-DBMS is considerably
larger than in a single-version approach. Based on the ver-
sion chain ordering of the DBMS, the amount of required
index records can be reduced. Second, newly created tuple
versions on update are applied to the index as new indepen-
dent records. On eviction of index nodes from buffer cache,
it results in several random write I/O and high write am-
plification on persistent storage media, like SSDs. Third,
in MVCC snapshots, maintained data in indexes is not suf-
ficient for returning the tuple version, that is visible to a
transaction, even if every search predicate is an indexed col-
umn, because transaction timestamps for visibility check are
exclusively maintained at tuple versions in base tables. The
index returns a set of candidates, which have to be rechecked
for visibility in base tables. So, more random read 1/O on
base tables occur. A schematic representation of a visibility
check is depicted in Figure 1. Last, several index records are
not visible to a transaction, but have to be processed in an
index scan, too. Garbage collection (GC) cycles reduce num-
ber of index records, that are no more visible to any active
transaction, but can also result in high write amplification
and a random write I/O pattern.

Transaction:
SELECT COUNT (x) FROM
table WHERE x = val;

A

return to Tx

get  ( Candidates <

return

Figure 1: Visibility Check

In this paper, we define required index structure charac-
teristics in a MV-DBMS for modern hardware technologies
in Section 2. We give a survey of four popular multi-version
and temporal indexing approaches in Section 3, whereby we
give a detailed description of our findings. Furthermore, we
provide an overview of indexing approaches, which can han-
dle characteristics of modern hardware very well, but have
no multi-version capabilities in an extended scope in Section
4. Finally, we propose one indexing approach for further re-
search in Section 5, which can be optimized for requirements
mentioned in Section 2.

2. REQUIRED INDEX STRUCTURE CHAR-
ACTERISTICS

Nowadays, a multi-version index structure has to fulfill
following characteristics. First, writes on secondary storage
media should be performed sequentially and append-only, if
possible. Although, random read 1/O can be approved due
to high parallelism and fast reads in asymmetric storage me-
dia. Second, in-place updates must be minimized, because
of asymmetry, out-of-place updates and wear in flash. In-
validation at index records, data modification, maintenance
operations and garbage collection all over an index structure
have the result of logical in-place updates of whole pages on

secondary storage. Nonetheless, redundancy and index size
should be kept as small as possible. Third, bulk loads are
very common operations in modern DBMS, e.g. in case of
bulk inserts, index creation or replication. In traditional in-
dexing approaches, like BT-Trees, sometimes it is cheaper
to rebuild the whole index from scratch, rather than load-
ing huge amounts of data to an existing index structure.
Indexes should be able to handle bulk loads with a sequen-
tial write I/O pattern and low maintenance effort. Fourth,
maintained data in multi-version index structures has to be
sufficient for visibility check, to eliminate unnecessary reads
on base tables, especially in case of row-oriented DBMS.
Therefore, frequently queried tuple attributes as well as val-
idation and invalidation timestamps have to be applied to
index records. Furthermore, natural order of predecessor
and successor versions must be considered. Last, workload
adaptivity is required. In complex memory hierarchies, data
placement is fundamental for fast data access and do not
let cores in processing units idle. Generally, not all data
fits in fast main memory and must be fetched from further
storage media. Based on current workload, data has to be
partitioned in hot and cold data and located on different
devices with different characteristics in memory hierarchy.
A detailed overview of an optimal index structure for mod-
ern hardware technologies and multi-version data is listed in
Table 1.

Table 1:
Structure

Characteristic

Characteristics of a near-optimal Index

[ Optimal
Secondary Storage I/O Pattern
Sequential append-only write I/O
Latencies of random reads are near to sequential
reads due to high parallelism in flash, optimally
required data is located as close as possible to
the processing unit
Index Structure and Operations
Tnserts only in main memory can be performed
very fast and guarantee minimal write amplifi-
cation
Out-of-place updates in main memory can be
performed fast and guarantee minimal write am-
plification

‘Write Pattern
Read Pattern

Insert Operations

Update/Invalidation
Operations

Bulk Loads Inserts of huge amounts of records only in main
memory can be performed very fast and guaran-
tee minimal write amplification

Maintenance Opera- Maintenance slows down insert performance,

tions but is a mandatory operation for good look-up
performance — performing as much maintenance
as possible in main memory, without evicting
index pages, will reduce write amplification and
wear
As soon as possible for records of tuple versions,
that are not visible to any active transaction,
optimal is in main memory, if records are al-
ready flushed to secondary storage, try to keep
sequential write 1/O pattern up
The less, the better — considering out-of-place
invalidation, maximal two records for the live
span of one tuple version
The less, the better — for performing visibil-
ity checks only in index structure, a key, (in-
)validation timestamps and record id are re-
quired
Multi-Version Capabilities
Maintained data in index structure must be suf-
ficient to perform visibility checks
Successor and predecessor versions should be
well connected, newer versions are likely re-
quested and should be kept in main memory
rather than records of older tuple versions
Workload Adaptivity
Tndox structure should have the capability to
optimize data placement along memory hierar-
chy for switches in workload

Garbage Collection

Redundancy

Index Size

Visibility Check

Version Chain Ordering

Workload Adaptivity

3. CURRENT MULTI-VERSION INDEXING
APPROACHES

In this section, we present four popular multi-version and
temporal indexing approaches. We give a short overview



of their structure and how index operations are performed.
Furthermore, we investigate their capabilities mentioned in
Section 2 and sum up our findings in short review tables. We
will show that every indexing approach has shortcomings in
at least one of the areas of multi-version capabilities, com-
plexity in look-up and maintenance, alignment to modern
computing and storage technologies and their specialization
for single fields of application.

3.1 Time-Split B-Tree

3.1.1 Data Structure Overview

A Time-Split B-Tree [9], depicted in Figure 2, is a two-
dimensional tree-based index structure with the dimensions
key value and timestamp, which enables efficient querying of
temporal data. An index record consists of key columns, a
validation timestamp and the record id of the tuple version
(see Figure 3). An invalidation of a version is performed out-
of-place by inserting a new index record with same key value,
a timestamp and a new record id. Therefore, key columns
have to be unique. Several tuple versions are held on a page
sorted by the key dimension. If a page is getting filled and
there is insufficient space to insert an additional record on
the target page, there are two possibilities to split a page.
Several policies exist for choosing in which dimension a split
will be performed. A Time-Split separates historical from
current data. The separation in historical and current data
depends on a timestamp determined at Version-Split. It can
be the split time or any point in time before the split time,
but after the oldest timestamp on a page. For multi-version
data, tuple versions valid before the selected timestamp have
to be moved and versions still active have to be copied to a
new historical node. Historical nodes are immutable and are
written in append-only manner to a further storage device.
A separator key has to be inserted in the parent node with
the lower key on the page and the timestamp of the split.
Index records, valid on or after the selected timestamp re-
main on the page with current data. A Key Split is similar
to a split in BT-Trees. The page is split at a split point and
a separator key is posted to the parent node. [9]

Figure 2: Time-Split B-Tree Index Structure

3.1.2  Discussion with respect to multi-versioning

The idea is to separate historical from current data and
maintain a history of tuple versions for temporal querying
based on transaction time. These kinds of queries are com-
mon in temporal DBMS. Inner nodes can be traversed in

Key | Timestamp | Value

Figure 3: Time-Split B-Tree Record Format

both dimensions — key column and timestamp. Traverse
steps have to be processed successively in a tree structure.
A page is read, the separator key with the pointer to the
child page is located and then the child page can be read.
This recursive operation is repeated until a leaf page is lo-
cated and the relevant index record can be fetched. There
is high complexity in the traverse steps, which cannot be
performed in parallel, so multi-core CPUs are not fully oc-
cupied and parallelism of flash is not leveraged optimally.
This effect is amplified by range queries in both dimensions.
Random reads are performed successively after processing
separator keys.

Updates result in a new index record. Older versions are
not touched for invalidation, which is principally good for
write amplification as well as asymmetry and wear in flash
storage media. Also historical versions are written once se-
quentially on a new historical node. Creating new nodes
for separating historical from current data is beneficial in
complex memory hierarchies. Data is archived and evicted
to a storage medium in memory hierarchy as part of the
splitting process. Its final location can be chosen based on
the requirements to an ordinary workload, e.g. on fast flash
media, if accessing historical data is common, or in other
cases on cheap slower devices. However, decision what data
is historical or current depends on several factors at split
time of overflowing pages, what is done on page level and
cannot be adapted to changes in workload. Furthermore,
new index records are applied to a random leaf page — a
current node. This generates random write I/O all over cur-
rent nodes at a Time-Split B-Tree, especially, in case of bulk
loads and if splits are performed. On persistent storage, the
results are in-place updates, high write amplification and
random writes, because the whole modified page is written
on eviction from main memory.

All versions are maintained in one single tree structure.
Since new index records invalidate older ones with same key
value, Time-Split B-Trees are qualified for unique keys, but
non-unique keys are not supported. Moreover, it is hardly
possible to apply changes in key to an index record. If keys
are modified, the only possibility is to insert an index record
with same key value as its predecessor, which is pointing
to an invalid location and a further record with the new
key, timestamp and the record id of the successor tuple ver-
sion. As a result, predecessor and successor versions are
unknown in index. Furthermore, index records are sorted
by key columns. Since updates in key are performed by in-
serting two index records with different key, modifications
are spread all over current nodes. On eviction from main
memory, modified pages are written to persistent storage
media. Consequently, random write I/O is performed on
flash, what is very costly.

In MV-DBMS it can be mandatory to find predecessor
and successor of tuple versions. Time-Split B-Trees do not
have this capability. Newer index records invalidate older
ones with same key. In best case, the predecessor is located
on same page as its successor, but if a Version-Split was



performed, traverse steps by timestamp dimension have to
be performed on historical data. Especially in case of long
living tuple versions, there is a high redundancy, because
still valid versions are copied on a Time Split. So multiple
random reads occur and storage utilization for archiving is
high.

Table 2: Characteristics Review Time-Split B-Tree

Characteristic

[ Findings
Secondary Storage I/O Pattern
Very good append-only behavior for Histori-
cal Nodes, but random for Current Nodes with
probably high write amplification on eviction
from buffer
Read Pattern Low read amplification, successive random
reads on traverse steps
Index Structure and Operations
Based on key, random in (un-)cached Current
Nodes
Out-of-place insertion of new record with same

Write Pattern

Tnsert Operations

Update/Invalidation

Operations key, new timestamp and new record id in ran-
dom (un-)cached Current Nodes, but keys have
to be unique

Bulk Loads Based on distribution of keys, random in (un-
)cached Current Nodes

Maintenance Opera- Based on workload, random in (un-) cached

tions Current Nodes and complex split policies

Garbage Collection In principle, archived Historical Nodes can be
removed from index structure with low effort
Probabilistic high redundancy of long living tu-
ple versions

One to many records per tuple version with key,
timestamp and record id

Multi-Version Capabilities

Koy and timestamp are sufficient for visibility
check

Redundancy

Index Size

Visibility Check

Version Chain Ordering | No connection between successor and predeces-
sor, versions are spread randomly on Historical
and Current Nodes

Workload Adaptivity
Data placement is based on current workload
and split policies — later reorganization is not
possible

Workload Adaptivity

In summary, Time-Split B-Trees have shortcomings in
holding and processing multi-version data as well as leverag-
ing modern hardware. Keys in index have to be unique and
it is costly to apply changes in key. Predecessor and suc-
cessor versions as well as their location are unknown. Prob-
abilistic, a high redundancy of long living versions occur.
Random write I/O and high write amplification in current
nodes do not fit to characteristics of modern storage media.
Pages on flash are written randomly and have to be erased
for updates, evoking poor performance and wear.

3.2 Multiversion B-Tree

3.2.1 Data Structure Overview

Multiversion B-Trees (MVBT) [1] have the structure of
directed acyclic graphs of nodes. Its structure is depicted
in Figure 4. Several root nodes are formed while splitting
nodes. As a consequence, roots are managed by additional
index structures, e.g. a BT-Tree. Every modification to
the indexed dataset generates a new version in a MVBT.
A lifespan is maintained at any index record, based on a
version for validation and a version for invalidation. Index
records in MVBT are formed by key columns, an in-version,
an out-version and the record id of a referencing tuple ver-
sion in base table, as shown in Figure 5. On insertion of a
new index record, its in-version is set to current version of
the MVBT. Out-version is not set, what means that an in-
dex record is still "alive”. Deletions set the out-version with
the version of the MVBT for invalidation. Updates are per-
formed as a combination of described deletion and insertion
operations. An index record belongs to a version, if it is
in its lifespan, but less the out-version. In a MVBT, muta-
ble Live Blocks with current data exist as well as immutable

Dead Blocks with dataset of a block at the version, when the
Dead Block "died”. A Live Block becomes a Dead Block, if
there is too few space for inserting a new record on an in-
sertion or update operation. In this case, a Version-Split
is performed. The old Live Block is copied to a new one,
in which invalidated data will be removed. The older one
becomes an immutable Dead Block. A new separator key is
posted to the parent nodes and the version lifespan of the
separator key of the old Dead Block is updated. Eventually,
in the new Live Block are too much entries, because most
records were still valid on Version-Split. In this case (strong
version overflow), a Key-Split is performed. If there are too
few valid records (strong version underflow after Version-
Split or weak version underflow as a result of invalidations)
on a Live Block, a merge with valid records of a sibling Live
Block is performed and the sibling becomes a Dead Block. Is
there no out-version for invalidation at a record maintained,
the record is valid in a Live Block, but was valid at Version-
Split of a Dead Block. Live and Dead Blocks are indexed by
version lifespan and key range. [1]

B-Tree

] L

Figure 4: Multiversion B-Tree Index Structure

Key |V, |V, | Value

Figure 5: Multiversion B-Tree Record Format

3.2.2 Discussion with respect to multi-versioning

A MVBT is able to manage multi-version data, since a
version lifespan is maintained at any index record and sepa-
rator key. Look-ups benefit from traversing in-version lifes-
pan and key column range, but like in Time-Split B-Trees,
the whole traverse step is performed successively with ran-
dom read I/O and processing separator keys. This opera-
tions do not optimally benefit from parallelism in flash and
multi-core CPUs.

Updates cause an insertion of a record in a random Live
Block as well as an in-place invalidation at the predecessor
record. Furthermore, bulk loads affect several Live Blocks,
based on distribution of keys. As a consequence, random
write I/O is performed all over the Live Blocks in MVBT
on eviction from main memory, what causes high write am-
plification, poor performance and wear on flash. This effect
is amplified by complex maintenance operations.



Records provide information about the version of valida-
tion and invalidation. In contrast to Time-Split B-Trees,
this enables management of non-unique keys in a MVBT.
Successor and predecessor can be identified by validation
or invalidation version. In best case, predecessors are lo-
cated on same page like its successor, but based on work-
load, Version-Splits and modifications in key columns result
in fragmentation of versions. So, it is required to traverse a

MVBT to find predecessors and successors.

Table 3: Characteristics

Tree

Review Multiversion B-

Characteristic

[ Findings

Secondary Storage I/O Pattern

‘Write Pattern

Random with high write amplification on cvic-
tion from buffer cache, finally for Dead Blocks

Read Pattern

Low read amplification, successive random
reads on traverse steps

Index Structure and Operations

Insert Operations

Based on key, random in (un-)cached Live
Blocks

Update/Invalidation
Operations

In-place invalidation with timestamp and out-
of-place insertion of new record with new key,
timestamp and record id in random (un-)cached
Live Blocks

Bulk Loads Based on distribution of keys, random in (un-
)cached Live Blocks

Maintenance Opera- | Based on workload, random in (un-) cached Live

tions Blocks and complex split policies

Garbage Collection Dead Blocks are spread randomly, high offort

Redundancy Probabilistic high redundancy of long living tu-
ple versions

Index Size One to many records per tuple version with key,

in-version, out-version and record id
Multi-Version Capabilities
Key, in-version and out-version are sufficient for
visibility check
Connection of successor and predecessor by
MVBT version, versions are spread randomly on
Live and Dead Blocks
Workload Adaptivity
Data placement is based on current workload
and split policy — later reorganization is not
possible

Visibility Check

Version Chain Ordering

‘Workload Adaptivity

Dead Blocks are written finally on eviction with all valid
and invalidated versions of a Version-Split. In case of long
living tuple versions, a high redundancy arises. This causes
one random write I/O and additional storage costs on flash.
In fact of creating a new Live Block on Version-Split, Dead
Blocks are spread randomly all over persistent storage me-
dia. High complexity on archive or garbage collection oper-
ations arises. Furthermore, whole data placement is based
on split policy and no possibility for reorganization along
complex memory hierarchies is provided.

To sum up, MVBT provide fast look-up of multi-version
data, but is not optimal for modern hardware, especially
in case of high update rates. MVBT does not leverage
complex memory hierarchies. Modifications are random in
Live Blocks and result in complex maintenance operations.
Likely, every modification cause in-place updates in Live
Blocks, which are applied to persistent storage media on
eviction. Random write 1/O, high write amplification and
wear occur on flash storage media.

3.3 MV-IDX

3.3.1 Data Structure Overview

A MV-IDX [3] is a lightweight multi-version indexing ap-
proach. It is based on a regular BT-Tree, but maintains a
virtual identifier (VID) at any index record instead of the
tuple id of its referenced tuple version in base table (see Fig-
ure 7). A VID is maintained for every tuple. Tuple versions
of a tuple do have the same VID. As depicted in Figure 6,
VIDs are maintained in a VID-List located in main memory.
For any VID in the VID-List, one Data Node is maintained

for every tuple version. The VID-List points to the newest
Data Node of a tuple. A Data Node provides a timestamp
of its creating transaction, the tuple id in base table of a tu-
ple version, a flag, if the version is committed and a pointer
to the Data Node of its predecessor. Only Data Nodes of
possibly visible versions is maintained in a VID-List and
the BT-Tree structure. In this data structures, all required
information is provided to perform an index-only visibility
check. [3]
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VID-List \ﬁ:____,/’ .
‘VIDIQJ’\_/ID 1 | ‘VID\N‘
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. DataNode: DN “‘\\ =
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Figure 6: MV-IDX Index Structure

Key | VID

Figure 7: MV-IDX Record Format

3.3.2 Discussion with respect to multi-versioning

The index structure in a MV-IDX bases on a BT-Tree.
Index records are inserted in a random leaf page, sorted by
its key columns. This behavior is amplified in case of bulk
loads. As a result, random maintenance operations occur
all over the index structure. On eviction of modified pages
from main memory, random write I/O with high write am-
plification occur on persistent storage media. In relation to
a BT-Tree, amount of inserted versions can be reduced. It is
necessary to insert a new index record in its B™-Tree compo-
nent, if the key of a new version changes. If indexed columns
are stable and a record is maintained, it is sufficient to insert
a new Data Node in the VID-List on update, because the
key and VID of a tuple are already maintained in the index
structure. Deletes can be handled similar by invalidation in
Data Nodes.

Look-ups and Scans are performed on key columns. There-
fore, traverse steps are performed successively on random
nodes. In a MV-IDX index structure, any possibly visible
version is indexed by key without any information for vis-
ibility checks. Information to perform visibility checks are
provided at the Data Nodes in the VID-List in main memory.
The problem is, timestamps of versions are not considered
in traverse steps. Any index record, matching to a search



key, has to be fetched and its Data Nodes in VID-List have
to be consulted. As a result, a huge amount of invisible
data to a transaction is read. The more versions are held,
the more records are read and checked for visibility in its in-
memory components. A MV-IDX can handle multi-version
data with less updates on keys very well, because of its in-
memory version chain, but is not suitable for archiving or
temporal querying.

Furthermore, the VID-List and its Data Nodes are ex-
pected to be held in main memory. This behavior has two
problems. First, a mechanism is required to get in-memory
components crash safe. Logging of BT-Tree operations is
not sufficient. Second, modifications while ongoing runtime
let its in-memory data structures grow. It is necessary to
perform garbage collection of old versions in main memory
components and BT-Tree structure to reclaim space. This
causes updates and maintenance operations in whole B-
Tree structure and results in random write I/O on persis-
tent storage media. One solution could be to persist its in-
memory components, what results in additional complexity
and random I/O.

Table 4: Characteristics Review MV-IDX

Characteristic Findings

Secondary Storage 1/0 Pattern
Random with high write amplification on evic-
tion from buffer cache
Probably invisible records are read, successive
random reads on traverse steps
Index Structure and Operations
Based on key, random in (un-)cached Nodes,
new Data Node in VID-List
Tn-memory append of Data Node, if the at-

‘Write Pattern

Read Pattern

Tnsert Operations

Update/Invalidation

Operations tribute value did not change, else insertion of
a new record with new key and same VID in
random (un-)cached Leaf Node and append of
Data Node

Bulk Loads Based on distribution of keys, random in (un-
)cached Nodes and new Data Nodes in VID-List

Maintenance Opera- Based on workload, random in whole BT -Tree

tions structure

Garbage Collection Teaf Nodes are spread randomly, but GC of
Data Nodes in VID-List is cheap
Very low redundancy, at most one record per
tuple version
One record per tuple with same key and VID
and one Data Node for every tuple version in
VID-List
Multi-Version Capabilities
Key and Data Nodes are sufficient for visibility
check
Version Chain Ordering Optimal connection of successor and predeces-
sor in Data Nodes of VID-List
Workload Adaptivity
Data placement is based on current workload
later reorganization is not possible

Redundancy

Index Size

Visibility Check

‘Workload Adaptivity

In a short resume, a MV-IDX brings benefits in low com-
plexity of traverse steps, relative good query and scan per-
formance, if most scanned data is visible to a transaction,
and versions are well connected in Data Nodes of its VID-
List. Updating versions without changing key columns can
be performed in-memory on Data Nodes in its VID-List and
no additional maintenance is required in its BT-Tree struc-
ture. Information stored in MV-IDX is sufficient to per-
form a visibility check. There are shortcomings in temporal
querying and additional in-memory structures have to be-
come crash safe. Updates on key columns in a new version
result in random update and maintenance operations all over
the BT-Tree structure and random write I/O as well as high
write amplification and wear on persistent storage media,
like flash. Moreover, there is no reasonable possibility to
spread data along complex memory hierarchies. It is fair to
say, MV-IDX leverages the characteristics modern hardware
to a partial degree.

3.4 Bi-Temporal Timeline Index

3.4.1 Data Structure Overview

The Bi-Temporal Timeline Index [6], depicted in Figure
8, is based on the Timeline Index [7] and extends the for-
mer one by supporting additional application time dimen-
sions, which are not maintained by the DBMS. A Time-
line Index preserves an overview of visible tuple versions at
any point in transaction time dimension. Every tuple ver-
sion creation and invalidation is listed in an Event List. A
Version Map is able to reconstruct visible tuple versions at
any point in transaction time. A new version can be cre-
ated in the Version Map and mapped to a span of entries in
Event List, e.g. on transaction commit. This data structures
and maintained information (see Figure 9) are sufficient to
perform multi-version indexing and temporal querying. Ef-
fort of reconstructing visible tuple versions underlay a linear
growth. A (Bi-Temporal) Timeline Index performs check-
points to counteract linear growth of reconstruction costs.
A checkpoint is, apart from the regular term of checkpoints
in DBMS, an independent operation and can be performed
in different frequencies. When a checkpoint is performed, a
Visibility Map is created, which contains the visibility infor-
mation of any indexed tuple in a bit-vector. In a temporal
query, the latest created Visibility Map before the requested
time slice in transaction time can be checked for visibility
of a tuple at this point in transaction time. Moreover, all
events in the Event List created after this checkpoint have
to be checked until the visibility of the desired version in
Version Map, matching to the requested time slice, is recon-
structed. Linear growing effort of visibility reconstruction
is reduced to events created after the latest checkpoint in
transaction time. A Bi-Temporal Timeline Index maintains
an Event Map and Visibility Bitmaps for any application
time dimension at any checkpoint. [6]

Visibility Map
| Version Map |
[ Event List |

transaction time

Figure 8: Bi-Temporal Timeline Index Structure

Version Map | Event List
H Version | Event ‘ ‘Row_ID|activation/invalidationH

Figure 9: Bi-Temp. Timeline Index Record Format

3.4.2 Discussion with respect to multi-versioning

Bi-Temporal Timeline Indexes feature transaction and ap-
plication time dimensions. Mainly, it is designed for column-
oriented in-memory DBMS, even its concepts can be ap-
plied to row-oriented DBMS [6]. Therefore, all required data
structures have to be integrated in the DBMS and become
crash save. In [6] the data structures are implemented in



additional tables in SAP-HANA. Visibility Maps, Version
Map and Event List have to be processed sequentially to
reconstruct visibility of a tuple at any point in transaction
and application time dimension. Key columns, like in the
ubiquitous BT-Tree are not maintained in the index. Re-
quired columns are looked up in base tables, performed by
algorithms of the in-memory DBMS. Column-oriented in-
memory DBMS benefit from this behavior twofold. First, re-
quired size of the index is low and more data can be located
in main memory. Second, matured in-memory algorithms
are used for look-up of required attributes. In row-oriented
DBMS, there are some drawbacks. Whole tuples have to
be fetched from base table, albeit not all attributes are re-
quired to answer a query. Traditional indexes maintain key
columns of tuple attributes in frequently performed queries.
As a result, unnecessary data is read from base tables ran-
domly. Furthermore, data is not sorted by key columns.
This problems can be solved by maintaining an additional
index, e.g. an ubiquitous B*-Tree. Benefits in storage size
are wasted. Furthermore, additional maintenance effort oc-
curs in the additive index structure. Random maintenance
operations in BT-Trees result in poor performance on per-
sistent storage media, like flash.

Transaction time is strictly advancing over time. Inserts,
updates and bulk loads in a Bi-Temporal Timeline Index
data structures are performed append-only. Events in Event
List as well as versions in Version Map are appended and
won’t be modified. Visibility Maps for transaction time as
well as Event Maps and Visibility Bitmaps for any further
application time dimension are calculated once on any check-
point. This behavior enables sequential writes on persistent
storage media. Flash benefits in several ways. First, sequen-
tial writes are performed very fast. Second, write amplifi-
cation is low, data is written once and won’t be modified.
This behavior reduces wear on flash.

Furthermore, based on workload and data placement in
complex memory hierarchies, reads on slower storage me-
dia are rare for multi-version indexing. The Bi-Temporal
Timeline Index requires all events in Event List since lat-
est checkpoint in transaction time before the queried ver-
sion in Version Map and the Visibility Bitmap created on
checkpoint to restore visibility of a tuple. Events created
before this checkpoint or after the requested version are not
required. If some data structures are not located in main
memory, it is possible to fetch them in parallel from flash.

Some redundancy occurs on checkpoints. Visibility Maps
and Event Lists for application time dimensions are calcu-
lated and stored for every checkpoint. Size of bit maps is
relatively low, but gets a factor on frequently created check-
points. The less checkpoints were performed, the more se-
quential processing effort is required to calculate visibility
of a tuple.

In a nutshell, Bi-Temporal Timeline Indexes have near
optimal characteristics for modern hardware. Write I/O on
persistent storage media can be performed sequentially, if
required. Temporal information is stored efficiently in sev-
eral data structures. Visibility of any tuple can be restored
in every transaction and application time dimension with
linear growing computing effort. However, key columns of
frequently queried tuple attributes are not maintained in the
proposed data structures. Sorting and look-up operations
are delegated to further DBMS layers. In column-oriented
in-memory DBMS this behavior is beneficial, but not opti-

Table 5: Characteristics Review Bi-Temporal Time-
line Index

Characteristic

[ Findings
Secondary Storage I/O Pattern
Possible sequential append-only of events
Possible sequential reads of events from latest
checkpoint
Index Structure and Operations
Append-only of Events and Version
Append-only of Events and Version

Write Pattern
Read Pattern

Insert Operations
Update/Invalidation
Operations

Bulk Loads Append-only of Events and Version
Maintenance Opera- Checkpoints with Visibility Map for transaction
tions time and Event Maps and Visibility Bitmaps for
any application time dimension

Possibility to remove Events before Checkpoints
— very cheap

Visibility Maps at any Checkpoint

Very small, Version Map, Bvents in Event-List
and Checkpoints

Multi-Version Capabilities

Only Events are stored, attributes have to be
fetched from base tables

Garbage Collection

Redundancy
Tndex Size

Visibility Check

Version Chain Ordering Every version can be restored from Checkpoints
and Event-List processing

Workload Adaptivity

‘Workload Adaptivity Suitable to high update rates, but reorganiza-

| tion is not possible

mal in row-oriented DBMS. Either whole tuples have to be
read and sorted from base tables, what result in enormous
querying effort and excessive read on persistent storage de-
vices for table scans, or an additional index structure must
be maintained. In this case, additional maintenance effort
and storage utilization is required.

4. EXTENDED SCOPE

4.1 LSM-Trees

LSM-Trees [12] and bLSM-Trees [13] are popular log-based
indexing approaches for high update rates in K/V-Stores,
which leverage characteristics of asymmetric storage media,
like SSDs. Unfortunately, similar to the ubiquitous B™-Tree,
there is no support for multi-version data. Because of their
high relevance in the database community, we give a short
overview of mentioned log-based indexing approaches and a
discussion with respect to their suitability to modern hard-
ware.

4.1.1 Data Structure Overview

LSM-Trees are composed of several components of differ-
ent size. Each component has its own tree-based sorted data
structure for indexing. A smaller one is always located in
main memory, which is called the C0 component. Further
components (C1 to Cn) resident on secondary storage media
in ascending capacity. Data modifications, like inserts and
deletes, are performed in the cached C0 component with-
out any latencies for reading a page from secondary storage.
Inserted data in a random order is transformed in a evic-
tion of pages with data in presorted order. If the size of
a component exceeds a certain threshold, a merge with the
next larger component has to be performed. Data of evicted
pages is merged with data in the next larger component and
is written to a new sequence of blocks with a fill factor of
100 percent. This enables a LSM-Tree to write data sequen-
tially in a log-structured manner. A look-up affects every
component, especially in case of range queries, beginning
with the C0 component. However, in case of a point query,
the algorithm can break, if a matching record was found. [12]

An enhancement of LSM-Trees for steadiness in perfor-
mance and write optimization is the bLSM-Tree. Bloom
filters protect components against point queries, however,



they are ineffective in case of scans. Each component has
to be looked-up, so there is a fixed number of three com-
ponents. No further component is created in case of load
spikes to the C0O component. Write optimization is achieved
by increasing the effective amount of data per merge with
replacement selection. Furthermore, there is a matching in
the scheduler between insertion rates to the C'0 component,
merges between C0 and C1 components, as well as between
C1 and C2 components, whereby steals are avoided and
throughput is optimized. [13]

4.1.2 Discussion with respect to suitability to mod-
ern Hardware

LSM- and bLSM-Trees are optimized for high update rates
as well as bulk loads and achieve sequential write patterns
to secondary storage media by presorting inserted and up-
dated data in the C0 component, which is located in main
memory, and merge operations between all components. No
BT-Tree-like update in-place operations are performed on
already evicted pages. Evicted pages have a fill factor of
100 percent, but some redundancy occurs on updates. This
behavior is very beneficial for traditional as well as mod-
ern storage media. However, for asymmetric storage me-
dia, write amplification of merge operations is not optimal.
Merge operations between a smaller component Cs and the
next larger component C; need to read all affected data of
both components in a predefined key range, what can be
handled in asymmetric storage media very well. A subset
of keys of Cs and C; are processed in a merge sort opera-
tion and the result will be appended in the C; component
sequentially. If the merge operation succeeds, the blocks of
the subset can be freed. With evolving time, merge opera-
tions will affect subsets of keys several times. The sequential
write pattern will lower the write amplification (in compar-
ison to a BT-Tree), but it is increased by overlapping merge
operations.

While merge operations, garbage collection can be per-
formed. Updating a value of a record, which is located in
a component on secondary storage, result in a new version
of the record in the C0O component. Merging key ranges
in components enable garbage collection of older versions.
Nevertheless, aged versions stay long time in larger compo-
nents and have to be processed on range scans. In case of
multi-version data, several problems occur. It is not save to
garbage collect versions without checking visibility in base
tables, because they are maybe still visible to active transac-
tions, especially in case of smaller components, which con-
tain newer versions. Furthermore, scan performance will
slow down, when accessing larger components, where lots of
versions tent to be invisible to active transactions, but have
to be rechecked for visibility in base tables, too.

Read amplification is increased by the number of com-
ponents. In theory, asymmetric storage media can handle
increased reading amounts very well, due to low read la-
tencies and high parallelism. Traversing a tree structure
cannot fully benefit from parallelism, because next required
pages are determined after processing a page. LSM- and
bLSM-Trees maintain a tree-based index structure for ev-
ery component. The hight of every tree-based component
is logarithmic to its capacity. In comparison to a B*-Tree,
more inner nodes are required and have to be processed in
traversal steps. LSM-Trees can break look-up algorithm, if
a matching key was found. Newer data is located in smaller

and first processed components. Furthermore, bloom filters
protect C1 and C2 components in bLSM-Trees against un-
necessary querying for point queries. However, range queries
require to look-up every component.

LSM and bLSM-Trees are able to share components along
several storage media in memory hierarchy. Nevertheless,
data placement is based on current insert and update work-
load and on capabilities of merge operations. Recently used
key ranges are maybe not evicted and merged with further
components, so they can stay in main memory. However,
data placement cannot be optimized for current look-ups.
It is fair to say that LSM- and bLSM-Trees not fully lever-
age complex memory hierarchies.

To sum up, LSM- and bLSM-Trees are a good choice for
high update rates, even if their write amplification is not
optimal. Their read behavior brings some drawbacks due to
separate index structures for every component and data or-
ganization is not optimal. Even if there are several versions
of a record in different components, because updates are per-
formed out-of-place in C0O component and maybe merged in
merge steps, they are not able to perform a visibility check
and are not optimal for indexing multi-version data.

4.2 Bw-Trees

Bw-Trees [11] are a highly scalable indexing approach that
is popular in main memory DBMS. They leverage charac-
teristics of modern processing and storage technologies by
latch-free log-based index operations. Unfortunately, Bw-
Trees have no multi-version capabilities. There are possi-
bilities to combine multi-version indexing approaches, like
Time-Split B-Trees, with latch-free operations of a Bw-Tree,
for example in the TSBw-Tree [10]. This will enable faster
index operations, but does not solve all problems outlined
in Section 3.1. We give an overview of the data structure
and a short discussion to the Bw-Tree on modern hardware
technologies.

4.2.1 Data Structure Overview

Bw-Trees consist of inner nodes as well as leaf nodes,
which contain records, similar to a BT-Tree and an in-memory
mapping table for logical page pointers. Data modifications
and index operations are appended with delta records in a
singly linked list. No latches are required, because modi-
fications are atomic compare and swap (CAS) operations.
As a result, less cache invalidations occur in a multi-core
CPU. Entries in the mapping table point to pages or to delta
records. Delta records can point to further delta records
or the page. When requesting a page, the whole linked
list, from the mapping table via all appended delta records
through the page is processed and the current logical state of
the “elastic” page can be determined. Leaf nodes are linked
via logical page pointers, whereby siblings are requested with
help of the mapping table. Splits and merges are performed
in multiple atomic steps with CAS operations. In case of
a split, a new sibling node is created in main memory and
an entry is added in the mapping table. Afterwards, a split
delta record is appended to the old page and the pointer in
the mapping table is set to the delta record in a CAS op-
eration. The split delta record points to the old page and
there is a sibling pointer to the new page. Finally, an index
entry delta is added to their parent node that points to the
parent node and the new page. Merges are performed simi-
lar with help of delta records and CAS operations. Eviction



of pages to secondary storage is in a log-based append-only
manner, no in-place updates are required. Delta records are
batched and written out-of-place. Fetching an "elastic” page
requires the mapping table and to read all delta records and
the page itself from secondary storage. Epochs and consoli-
dating delta records enable garbage collection. [11]

4.2.2 Discussion with respect to suitability to mod-
ern Hardware

Bw-Trees are optimized for modern hardware technologies
and enable high scalability and concurrency, due to latch-
free log-based data modification and index operations. This
behavior enables a high CPU cache hit rate, because very
less cache invalidations occur. Processing units are kept
busy and do not idle.

Their write pattern to secondary storage is in a sequen-
tial append-only manner. Write amplification is very low,
because pages and delta records are written once and will
not change, except for garbage collection. Reads from sec-
ondary storage are random, because delta records have to be
read, but asymmetric storage media can handle reads very
well, due to high parallelism and low read latencies, e.g. on
flash. Based on length of the delta chain, parallelism is not
fully leveraged, because all used pages on secondary storage
have to be read successively in a linked list. This problem
is reduced by batching delta records. After reading a page,
a fraction of the delta chain can be processed, before read-
ing a further page. Furthermore, garbage collection reduces
the length of delta chains. However, if it is common that
Yelastic” pages get evicted after a few updates many times,
the delta chain will be fragmented or high effort on garbage
collection arise.

Leveraging several levels in complex memory hierarchy
seems to be a problem for Bw-Trees. It is possible to opti-
mize write behavior of delta records to secondary storage,
e.g. if delta records can be batched on non-volatile memo-
ries, but it is hard to reorganize data for current read work-
load. In this latch-free indexing approach, data placement
mainly depends on current data modifications. Bw-Trees
are optimized for huge amounts of main memory, whereby
writes and reads on secondary storage are rare and it is com-
mon that most required data is located in CPU caches and
main memory.

Managing multi-version data is not supported in Bw-Trees.

Like in BT-Trees, candidates returned by the index scan
have to be validated in base tables. In theory every delta
record corresponds to a version of a tuple, so timestamps
could solve this problem. Newer versions can be found at the
beginning of a delta record chain of a page, but to determine
current state of the “elastic” page, the whole chain has to be
processed first. There would be no separation of current
and historical data — read and scan performance would de-
crease. One idea is the TSBw-Tree [10], which combines the
latch-free log-based index operations of the Bw-Tree with
the good temporal but limited multi-version capabilities of
a Time-Split B-Tree (outlined in Section 3.1).

In summary, the Bw-Tree provides high scalability, par-
allelism and concurrency and leverages modern hardware
technologies very well for main memory DBMS. Its write
pattern on secondary storage is near optimal, but reads of
delta record chains do not fully leverage parallelism in asym-
metric storage media. Reorganization methods for current
read workloads in complex memory hierarchies are not pro-

vided. Bw-Trees do not have multi-version capabilities, but
it is possible to combine their in-memory approaches with
tree-based indexes, which can handle multi-version data.

S. FUTURE RESEARCH

The challenge is to combine multi-version capabilities in
one single index structure, which is able to leverage charac-
teristics of modern hardware and is aware of complex mem-
ory hierarchies as well as provides a workload adaptivity.
Partitioned B-Trees [4] could be an approach that is able
to fulfill mentioned requirements. A Partitioned B-Tree is
based on a BY-Tree. A partition number is added to any
index record in an artificial leading key column. This en-
ables partitioning of data in one single index structure that
preserves an alpha numeric sort order. The structure of a
Partitioned B-Tree is depicted in Figure 10. Index records of
tuples can be appended in a new partition and written out
sequentially to secondary storage on eviction of a whole par-
tition from main memory. Bulk loads can be performed in
an additional partition, without affecting further partitions,
which handle current workloads in parallel. On load spikes
of current workload, it is possible to throttle or stop the bulk
load operation without wasting work and continue at a later
point in time [4]. Evicted partitions become immutable, ex-
cept for garbage collection or reorganization operations, so
write amplification is very low and there is no need for ran-
dom write I/O. Its write pattern can be designed optimal
for modern storage technologies.

Partition no. 0 o

Figure 10: Partitioned B-Tree Index Structure

Record Type | Timestamp | Partition Number | Key | Value

Figure 11: Partitioned B-Tree Record Format

Furthermore, Partitioned B-Trees are able to serve as ver-
sion store in MVCC, by maintaining a timestamp at index
records either for validation or invalidation [4]. One times-
tamp is sufficient, if a deletion marker (anti matter”) is
inserted out-of-place in a successor partition. The “anti-
matter” can be implemented as a single record type and/or
as a replacement record, that also set the validity of the new
tuple version, similar to Time-Split B-Trees [9]. An index
record consists of meta data, e.g. the record type and the
timestamp, partition number and key value as columns and
the record id as value (see Figure 11). Read characteris-
tics in flash are leveraged by processing several partitions in
parallel. As a result, there is less idle in processing units.
Furthermore, recently inserted index records stay in main
memory, whereby cores in CPU are kept busy, if look-ups
are delegated to newest partitions first. Therefore, a latch-
free environment in partitions in main memory, like Bw-



Trees [11], is beneficial. Immutable persisted partitions en-
able the use of FPGAs, which allow fast and energy efficient
processing of huge amounts of data near its storage location.
Additional, persistent partitions can be protected from un-
necessary processing by filter technologies. Workload adap-
tivity is provided by Adaptive Merging [5], by what index
records can be placed in partitions located along storage de-
vices in complex memory hierarchies, as desired. Partitioned
B-Trees seem to be a multi-version indexing approach lever-
aging characteristics of modern hardware technologies.

Table 6: Characteristics Assumptions Partitioned

B-Trees
Characteristic | Assumption
Secondary Storage I/O Pattern
‘Write Pattern Sequential append-only of index records in a
partition
Read Pattern Successive for inner nodes, which are well
cached for partitions with newly inserted
records, and high parallelism in leaf nodes
Index Structure and Operations
Tnsert Operations Tnserts in leaf nodes of partition in main mem-
ory
Update/Invalidation Out-of-place in leaf nodes of further partitions
Operations in main memory
Bulk Loads Append in additional partition in main memory
Maintenance Opera- Maintenance is reduced to index nodes in main
tions memory — inner nodes, which directing to leaf
nodes of not yet evicted partitions and its leaf
nodes
Garbage Collection Records of tuple versions, that are not visi-

ble to any running transaction, can be removed
in main memory, if the partition was not yet
evicted, else the records can be garbage col-
lected as part of merges of partitions
Redundancy Low redundancy with exact one index record
per indexed tuple version and up to one "anti-
matter” for invalidations

Index Size One or two index record with Partition number,
key columns, one timestamp (validation and/or
invalidation) and record id — possibility of com-
pression
Multi-Version Capabilities
Visibility Check Key and timestamps in index records and "anti-
matter” are sufficient for visibility check as part
of the search algorithm
Version Chain Ordering Connection of successor and predecessor ver-
sions located in consecutive partitions by key
and timestamp
Workload Adaptivity
Workload Adaptivity Suitable to high update rates as well as reorga-
| nization by Adaptive Merging

6. CONCLUSION

This paper outlines popular indexing approaches for multi-
version and temporal data. The objective is to review their
capabilities for processing and managing multi-version data
in modern computing and storage technologies and complex
memory hierarchies. We established that all of the outlined
approaches have drawbacks in at least one investigated area.
Multi-version and temporal index structures presented in
Section 3 have shortcomings in multi-version capabilities,
complexity in look-up and maintenance, alignment to mod-
ern computing and storage technologies or in their special-
ization for single fields of application. Indexing approaches
presented in Section 4, which can leverage characteristics
of modern hardware technologies, do not have multi-version
capabilities. The challenge is to combine multi-version capa-
bilities in one single index structure, which is able to handle
characteristics of modern hardware and is aware of complex
memory hierarchies as well as provide a workload adaptivity.

Partitioned B-Trees seems to be a good indexing approach
for multi-version data and modern hardware technologies.
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