
Write-Optimized Indexing with Partitioned B-Trees

Christian Riegger
Data Management Lab
Reutlingen University,

Germany
christian.riegger@

reutlingen-university.de

Tobias Vinçon
Data Management Lab
Reutlingen University,

Germany
DXC Technology

Böblingen, Germany
tobias.vincon@dxc.com

Ilia Petrov
Data Management Lab
Reutlingen University,

Germany
ilia.petrov@

reutlingen-university.de

ABSTRACT
Database management systems (DBMS) are critical perfor-
mance component in large scale applications under modern
update-intensive workloads. Additional access paths accel-
erate look-up performance in DBMS for frequently queried
attributes, but the required maintenance slows down up-
date performance. The ubiquitous B+-Tree is a commonly
used key-indexed access path that is able to support many
required functionalities with logarithmic access time to re-
quested records. Modern processing and storage technolo-
gies and their characteristics require reconsideration of ma-
tured indexing approaches for today’s workloads. Parti-
tioned B-Trees (PBT) leverage characteristics of modern
hardware technologies and complex memory hierarchies as
well as high update rates and changes in workloads by main-
taining partitions within one single B+-Tree. This paper in-
cludes an experimental evaluation of PBTs optimized write
pattern and performance improvements. With PBT trans-
actional throughput under TPC-C increases 30%; PBT re-
sults in beneficial sequential write patterns even in presence
of updates and maintenance operations.

CCS Concepts
•Information systems → Data access methods; B-
trees;

1. INTRODUCTION
Indexes describe an additional access path to data located

in base tables and can speed up look-up performance for spe-
cific data maintained in key columns, but they slow down
insert and update performance in transactional workloads.
The index structure of a B+-Tree [5] became ubiquitous
in database management systems [3]. Unlike other index
structures, B+-Trees allow to accessing data in sorted order
with logarithmic complexity. Point queries and scans are
optimally supported as well as uniqueness constraints and
multi-column indexing. Records can be created, looked-up,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

iiWAS ’17, December 4–6, 2017, Salzburg, Austria
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-5299-4/17/12. . . $15.00

DOI: https://doi.org/10.1145/3151759.3151814

updated and deleted dynamically and transaction safe with
relatively high concurrency.

B+-Trees are a dynamic and balanced tree structure. Its
logical data model fits well to a physical representation on
secondary storage. The size of an index node can correspond
to the logical size of a page on persistent storage media. Ev-
ery index node does have an unique identifier. Internal nodes
(including the root) contain sorted separator keys, which di-
rect a search to leaf nodes in a traversal operation. Several
data records are sorted stored in leaf nodes. All leaf nodes
are in the same level of the B+-Tree and linked with their
siblings via page pointers to fully support scans. Typically,
a data record consists of indexed columns, a pointer with the
record-id of the indexed data record and some header data.
The height of a B+-Tree depends on several factors, but with
high fan-out is typically low (3 to 6 levels). While insertion
and deletion, maintenance operations can occur and nodes
may get split or merged and records may get moved. Modi-
fication cause an additional maintenance overhead and I/O
operations. All operations can take benefit from caching
pages in main memory.

Typically, not all required data in a database fits in main
memory. Upper levels in a B+-Tree near the root will be
cached in most cases. A few nodes in lower levels can be
cached due to a high fan-out and limited main memory.
If needed, these nodes are fetched from secondary storage,
but therefore cached nodes have to be evicted and potential
changes have to be written. The result is an unfavorable
I/O pattern whereas a sequential one would be much more
favorable. Furthermore, the updated data volume is much
smaller compared to the size of the written page. Write am-
plification is the ratio between the logical and the physical
write volumes. Workloads with random updates in the index
usually result in high write amplification. Moreover, index
maintenance operations result in random write I/O.

As we can see, B+-Trees are very efficient for range and
point look-ups, but they have shortcomings in index updates
with respect to performance, write I/O pattern and write
amplification. In Section 1.1 we implement and extend an
adaption to B+-Trees, the Partitioned B-Tree (PBT) [1], to
handle the above shortcomings. We compare PBT to fur-
ther approaches in Section 2 and give some implementation
details in Section 3. We validated our estimations in a pro-
totype, which is based on Apache Derby, on a TPC-C like
benchmark and present our results in Section 4.

This paper shows how rethinking and adapting established
algorithms with few modifications can lead to a desired and
favorable behavior and notable performance improvements.

1.1 Approach: Partitioned B-Trees

1.1.1 Data Structure Overview
We implement and extend the Partitioned B-Tree (PBT)

[1] as an adaption of the traditional B+-Tree. PBT makes
use of most B+-Tree algorithms with few modifications. The
essential difference is the introduction of an artificial leading
search key column – the partition number. An index record
consists of a partition number, its search key columns and a
record-id. Every partition number uniquely identifies a sin-
gle partition. This idea enables the PBT to maintain parti-
tions within one single tree structure and reuse existing in-
tricate implementation algorithmic optimizations, buffering,
etc. Partition numbers are transparent for higher database
layers and each PBT maintains partitions independent from
other PBTs. Partitions appear and vanish as simple as in-
serting or deleting records and can be reorganized and opti-
mized on-line in merge steps, depending on the workloads.
Partitioning data within a single B+-Tree enables several
possible applications (outlined in [1]). In this paper, we fo-
cus on write optimization and a better use of the memory
hierarchy in a TPC-C like transactional workload.

Traditional B+-Trees tend to have the disadvantage of a
high write amplification (see Table 2). PBTs write any mod-
ification of index records exactly once on eviction of the re-
spective partition, except for later reorganization or garbage
collection operations. This is realized by forcing sequential
writes of all leaf pages of a whole partition. The operation
is illustrated in Figure 1. Leaf nodes of the latest partition
are stored in a separate area of the database buffer – the
PBT-Buffer. The PBT-Buffer is shared for all PBT indexes
in database. Records can be inserted, updated and deleted
only in the latest partition. The PBT-Buffer is designed
to get active partitions the chance to grow. Once the PBT-
Buffer gets full, it selects a victim partition and writes it out
sequentially to secondary storage. Once a partition is writ-
ten out, it is immutable. First, once a partition is evicted
a new partition is automatically created to host future in-
dex entries. Second, upon eviction a bloom filter is created
covering all index entries within the partition. The bloom
filter is written out together with the partition data and re-
mains unchanged as partitions are immutable. The purpose
of bloom filters will be explained later in this paper. Last,
all leaf pages are written sequentially to secondary storage.

The index entries of a PBT-Buffer resident partition are
also part of the higher levels of the PBT index. Hence, they
are traversed as part of any look-up operation.

PBT-Index

Partition no. 0 1 … n-2 n-1

DB Buffer

PBT-Buffer

sequential write of Partition n-1

Figure 1: Sequential write of a Partition

It is fair to say that all modifications are cached and leaf
pages have a nearly optimal write amplification. Inner nodes
in the PBT are passed to the regular cache logic. In fact,

that modifications are applied to its latest partition, as well
as look-ups will be performed mostly on its latest partition,
inner nodes, which direct to leaf nodes in this partition, are
cached as well and evictions are very rare for most replace-
ment policies.

Updates of already written data in previous partitions re-
quire an out-of-place invalidation. This can be done by in-
serting a Replacement-Record in the new partition. Deleting
a record in an old partition requires the insertion of an Anti-
Record in the new partition [1]. Therefore, Replacement-
Records can be viewed as a combination of an Anti-Record
and a new inserted Index-Record. In the search algorithm,
Anti-Records, matching to the search criteria, can be col-
lected and invalidated Index-Records can be sorted out from
the result set, because the PBT starts probing the latest
partition and ends up in the oldest partition, except if the
search algorithm can break up earlier (a detailed example is
provided later in this paper).

Implications of Look-Up Overheads. Probing every par-
tition leads to a higher read amplification by a factor of
the partitions count in comparison to a traditional B+-Tree.
There is a certain impact on performance due to following
facts. First, modern storage media allow fast read opera-
tions. Asymmetric storage media, like SSDs, can perform
several requests in parallel with low latencies. Write opera-
tions are much slower. Second, newly inserted data is well
cached in the PBT-Buffer and common database buffer. The
latest partition can be traversed and looked-up without any
I/O operation on secondary storage media. A look-up can
break up earlier, if a query requests a matching record with-
out any sort order. Third, bloom filters for every closed
partition and partition key ranges can avoid traversing par-
titions without relevant records. This behavior saves read
I/O operations. Partition key ranges are useful for any kind
of query. Partitions can be skipped, if the requested record
key is not in the partition key range. If the requested record
is in the partition key range, the bloom filter of a partition
has to be checked. Bloom filters are created, after the par-
tition was closed for modifications. So, a well sized simple
bit vector guarantees a false positive rate of less than 1%.
Bloom filters are useful for uniqueness constraint checks and
point queries with a full search key. For range queries and
partial key searches further filter methods have to be con-
sidered. Last, the number of partitions can be reduced. It
is possible to merge partitions in a merge sort, which would
be processing and memory intensive, but mechanics can be
implemented to pass low impact on performance of current
workload. The result of a merge sort is a new partition, that
can be written sequentially. In the merged partition, Anti-
Records may neutralize Index-Records, both can be garbage
collected. Afterwards, two or more merged partitions can be
removed from the whole tree structure in a single step and
space on secondary storage can be reclaimed. A further
approach is Adaptive Merging [4], whereby often queried
records can be cached in a new partition and older parti-
tions has not to be queried for this records. Both features
are not considered in current implementation.

Example of a PBT. In Figure 2, important data structures
as well as the result for different look-up transactions in a
list are depicted for a specific example. The important data
structures are (a) Partition Meta-Data, which is maintained

for every partition in a PBT, (b) the PBT index structure,
which was build on column x of a base table, (c) a list of
Anti-Records, which is maintained for every scan operation
and (d) the Result Set of a scan. Two partitions exist in the
example. Partition 0 is filled with two Index-Records – 1
has a key of 2 and references to tuple A in base table and 2
has a key of 4 at eviction time of this partition and references
to tuple B. In Partition 1, an update was performed on tuple
B – an Anti-Record (3), which invalidates Index-Record (2)
in Partition 0, and a new Index-Record (4) with the new key
value 2 were inserted – modifications were performed write
optimized out-of-place.

Partition no. 0 Partition no. 1
0 | 2 | (*A) 0 | 4 | (*B) 1 | 2 | (*B) 1 | 4 | (*B)

1 2 4 3

Transaction traverse Partition 1 in (b) traverse Partition 0 in (b) Result
T1: COUNT(x=2) add Index-Record (4→d) add Index-Record (1→d) 2
T2: COUNT(x=4) remember Anti-Record (3→c) skip Index-Record (2) by (c) 0

T3: COUNT(x<5) add Index-Record (4→d),
remember Anti-Record (3→c)

add Index-Record (1→d),
skip Index-Record (2) by (c)

2

T4: COUNT(x=5) skip due to partition key
range located in (a)

skip due to partition key 0

T5: GET1(x=2) add Index-Record (4→d) not processed *B

T6: GET1(x=3) no Index-Record found in (b)skip due to bloom filter in (a) -

Anti-Records

Result-Set
c d

b
Partition

Meta-
Data &
Filter

Partition
 Meta-

a

range located in (a)

Figure 2: Look-up in a PBT-Index

Transaction 1 counts all records with a value of 2. This
key is in partition key ranges in (a) of Partition 1, so this
partition has to be traversed in-memory. Index-Record (4)
is found in leaf nodes in PBT-Buffer and will be added to
(d) Result Set. No further record will be found in Partition
1. Partition 0 will be traversed next due to positive crite-
ria in partition key ranges and bloom filter in (a). Index-
Record (1) will be added to (d) Result Set and the scan ends.
The result of the transaction is 2. Transaction 2 counts all
records with a value of 4. The search algorithm will perform
similar to Transaction 1, except it will find Anti-Record (3)
in Partition 1 and add it to (c) Anti-Records list. When
traversing and look-up Index-Record (2) in Partition 0, the
search algorithm will recognize the Anti-Record (3) in (c)
and ignores the record. The result is 0 records are matching
to the search criteria. Transaction 3 is a range scan, that
combines the behavior of Transaction 1 and 2, except that
bloom filters cannot be used. Transaction 4 does not tra-
verse any partition, because its search criteria x=5 is not
in the partition key ranges, which are located in (a) Parti-
tion Meta-Data, and are checked first. The index can return
a result of 0 without any read I/O on secondary storage.
Transaction 5 looks-up one tuple with a key of 2. After
checking (a) Partition Meta-Data, Partition 1 will be tra-
versed in-memory. Index-Record (4) will be found in a leaf
node in PBT-Buffer, without performing any read I/O on
secondary storage. This record can be returned and the tu-
ple B can be fetched from base table. Transaction 6 requests
one tuple with a key of 3. This key will be in partition key
ranges in (a) Partition Meta-Data of both partitions. Par-
tition 1 has to be traversed in-memory, whereby no record
will be found. Partition 0 has not to be traversed, because

its bloom filter will return a negative result, and read I/O
on secondary storage can be saved.

2. RELATED WORK
LSM- [6] and bLSM-Trees [7] are optimized for high up-

date rates as well as bulk loads and achieve sequential write
patterns to secondary storage media by presorting inserted
and updated data in the C0 component, which is located
in main memory, and merge operations between all compo-
nents. PBT achieve a similar write behavior on secondary
storage media by sequential writes on eviction of partitions
in the PBT-Buffer. Insert operations can be performed in
the latest partition without any I/O operation on secondary
storage at any point in time. No B+-Tree-like update in-
place operation is performed. If the latest partition gets
immutable, a new one was created before, which can handle
ongoing modifications. Inner nodes in PBT, which direct to
leaf pages of its latest partition, are cached in the common
database buffer mostly, for which reason no considerable I/O
operations occur while index traversal. The latest partition
in PBT is comparable to C0 component in LSM trees. Fur-
thermore, it is possible for PBTs to create a separate parti-
tion to handle bulk loads. This is beneficial in several ways.
Data in further partitions is not affected by a bulk load.
There is low influence on performance of other transactions.
Furthermore, if the bulk load transaction fails, the whole
partition can be easily removed from a PBT. The partition
can be written sequentially after commit of the bulk load
transaction.

Write Optimized B-Trees [2] optimally support append-
only sequential writes, without losing the ability to update
data in-place. For disks, this is beneficial for writes, but
reads become more randomly and pre-fetching for scans gets
expensive. PBT looks-up partition after partition. Pages
in a partition are allocated nearby. Pre-fetching can be per-
formed without arm-movement. In case of SSDs, a further
problem occur. Pages are not protected of further modifi-
cation and may become invalidated. As a result, pages in
blocks become invalid and to clean-up space, SSDs have to
copy valid pages in a new block to delete invalidated pages
finally. This behavior increases the write amplification of a
SSD. If pages in a PBT get evicted, they cannot become
invalid, except for merges, reorganization and garbage col-
lection. This operations affect all pages in a partition and
blocks on SSD can be erased without copying valid pages.

3. IMPLEMENTATION DETAILS
We implemented our prototype in Apache Derby release

10.10. Derby is an open source relational database imple-
mentation, based on Java, JDBC and SQL standards. It
uses B-Tree Secondary Index (B2I) implementation based
on Lehman and Yao’s B+-Tree [5] index structure. The re-
placement policy of the cache manager is a clock algorithm.

A prototypical implementation of Partitioned B-Trees af-
fects the modules B2I and CacheManager mainly. Further
database modules and functionalities are not affected and
there is no need for adaption. In this section, we outline the
changes to the standard algorithm.

3.1 Partition Management
Before we start demonstrating the applied changes to in-

dex operations, we need to understand partition manage-

ment and selection. Every single B+-Tree has typical meta
data, additional information and one or more Partitions.
Partitions are stored in a linked list in main memory. A Par-
tition object consists of the partition number, an indicator,
if it is mutable, timestamps for creation and closing time,
minimum and maximum record stored in partition (parti-
tion key ranges) and a count of records. A Partition maybe
contains a Bloom Filter, which is located in main memory,
but can be allocated on any storage media in memory hier-
archy, e.g. on fast non-volatile memories.

PBT loops over partitions in reverse order in several look-
up operations, until the algorithm break. Remember, maybe
not every partition contains a requested key. To filter out
unnecessary partitions, the search key ranges (keystart and
keystop) of the look-up is required to determine the next
relevant partition. For purpose of using bloom filters, it has
to be determined, if an exact full key is requested. Bloom
filters cannot answer partial keys or key ranges. In both
cases, a partition key range check can be performed, to filter
out an unnecessary partition.

3.2 Index Operation Algorithms

PBT Insert Algorithm. Inserting a new record in a PBT
will be performed in the newest partition, located in PBT-
Buffer in main memory. First the index has to be opened for
update. Then the insert operation can be performed. An
index record consists of a key, which is an array of columns,
and a row location pointer. In a PBT, index updates will
only be done in the newest active partition. But for unique-
ness constraints, older partitions have to be checked, too. If
there is no uniqueness constraint, the check of older parti-
tions can be skipped. The key is not in every partition avail-
able. If the new key is not within the range of the partition or
the key is not in the bloom filter, which will be created while
the partition was closed and evicted to secondary storage,
there must be done no look-up for this partition. The bloom
filter for the newest partition has not been created yet, but
the look-up will be performed in-memory. The first column
of the key will be transformed to a partitioned key. It is a
sequence of bytes, the first two bytes consist of the partition
number value and all other bytes consist of the original key.
After all, the index-record will be added to the B+-Tree in a
leaf page on its regular position inside the partition. If the
page is full, on which the index-record should be inserted, a
page split has to be performed first. The index-record type
of a regular insert operation is an Index-Record.

PBT Look-Up Algorithm. Look-Up operations in Apache
Derby consist of two algorithms that return one record per
invocation – next and fetch. First the PBT has to be opened
for read access. The Scan has to be initialized, whereby a
scan partition is selected and the scan position is set to one
slot before the first matching key. Next will be invoked,
which set the position to the first matching slot on a page.
There is a fast exit implemented, if a point query is per-
formed and the key was invalidated in a newer partition.
After the position was set, it is necessary to determine, if
the key at the slot is less the upper key range of the scan –
then the next partition has to be checked – and if the record
was marked as deleted (Ghost-Record in regular B2I imple-
mentation). If the record is valid, the record type (Index-
Record or Anti-Record) has to be determined. Anti-Records

will be added to a list of Anti-Records, located in the current
scan partition (antipart) and the next slot can be checked.
If the record type is an Index-Record and the record is not
located in the Scan-Anti-Record-List antiscan, the position
is set to the next valid record and can be fetched. Next will
be invoked again, if a further record is required. If there is
no further matching key in a partition, the next partition
is selected, whereby the antipart list will be appended to
antiscan and the search key range will be updated. This
algorithm can be invoked, until all partitions are processed
and no further key can be found. When fetching a record
and returning it to further database layers, the partition
number is made transparent.

In a partition, the sort order is ascending or descending.
For fetches, that affect more than one partition, the sort or-
der maybe is not as expected from regular B+-Trees. In this
case the predicate ”ORDER BY indexed column ASC/DESC”
has to be used in the query. So the query planner is able to
use the procedure, that merges records in the desired sort
order. Additional optimizations can be performed on aggre-
gates.

PBT Delete Algorithm. In general, deletions are not per-
formed physically in Derby, but logically. Therefore a dele-
tion marker is set at a matching Index-Record and the record
becomes a Ghost-Record. This behavior reduces index main-
tenance operations. Slots of Ghost-Records can be recycled,
by reusing the slot for new insertions, or can be garbage col-
lected later. A PBT can make use of this behavior, in case of
deleting an Index-Record that is located in newest partition.
A look-up operation is performed and the scan position is
set by algorithm next. Then the status flag can be set by
the delete algorithm. If the Index-Record is not located in
newest partition, an Anti-Record has to be inserted. There-
fore, a new Index-Record is inserted in the newest partition
and its status flag is set to invalidate, whereby it becomes
an Anti-Record.

PBT Update Algorithm. Updates in Apache Derby are a
combination of the delete and insert algorithm. For PBT
the algorithms next, delete and insert are performed. Mod-
ifications will be done only in newest partition.

3.3 Evict Partition
Eviction from PBT-Buffer of a partition asynchronously

occurs in a server transaction. This happens, if the reserved
space for leaf pages in the PBT-Buffer is reached. Which
partition will be written to disk depends on the cache logic.
Frequently updated partitions should grow, but an eviction
of a partition should also clean-up as much space as possible
in the cache. Currently, the partition with most used buffers
will be closed. A new partition is created. The older one be-
comes immutable. Any record is read from the pages in the
PBT-Buffer and added to a newly created bloom filter. A
read lock is required, but that does not affect index updates,
because changes will be done in the new partition. After all,
the pages are written to secondary storage in a sequential
manner. An enhancement could be to merge leaf pages. In
fact of, the partition won’t be changed at any time, it is not
necessary to leave space on any leaf page. For a leaf page fill
ratio of 50% to 75%, the pages which have to be written can
be also reduced up to the half. Freed pages can be returned
to free pages of the new partition.

Figure 3: tpmc per Warehouse PBT vs. B2I

WH PBT AVG PBT SDEV B2I AVG B2I SDEV Perf. impr.

1 2760 ± 2.2% 2663 ± 3.1% 3.6%

2 4320 ± 0.1% 3292 ± 1.3% 31.2%

3 4420 ± 1.6% 3269 ± 0.3% 35.2%

4 4200 ± 1.5% 2628 ± 0.9% 59.8%

5 3917 ± 1.6% 2412 ± 3.5% 62.4%

6 3700 ± 1.0% 2041 ± 1.0% 81.2%

7 3059 ± 0.5% 1659 ± 0.2% 84.4%

8 2942 ± 3.4% 1607 ± 1.2% 83.0%

9 2847 ± 2.0% 1534 ± 1.0% 85.7%

10 2287 ± 1.9% 1596 ± 0.1% 43.3%

Performance Improvement at maximum occupancy factor: 30.5%

Table 1: TPC-C Performance Evaluation

4. PERFORMANCE EVALUATION
We evaluated the performance of PBT in a TPC-C like

benchmark (Java TPC-C) with few modifications due to
limitations of Apache Derby 10.10. A connection pool was
implemented with up to 20 JDBC connections and a special
connection for concurrent delivery transactions was added.
Warehouses are the scalability factor of this workload. The
database size as well as the concurrent transactions increase
with every warehouse.

The experimental set-up with standard TPC-C schema
and workload was configured with following parameters: (i)
Warehouse Count: 1-10, (ii) Threads: 10 per warehouse,
(iii) Connection Pool: up to 20 + 1, (iv) Ramp-Up Time:
30 minutes, (v) Duration: 1 hour. The server configuration
is as follows: (i) Operating System: Windows 7 Professional
(64 Bit), (ii) CPU: Intel Core i5 4670 Dual Core (3.40 GHz),
(iii) RAM: 4GB, (iv) HDD: Seagate ST500DM002. Apache
Derby was configured with following parameters: (i) Page-
cachesize: 400 MB, (ii) DeadlockTimeout: 10 seconds, (iii)
Lock-WaitTimeout: 30 seconds, (iv) CheckpointIntevall: at
2 GB Log Size, (v) LogswitchIntervall: at 500 MB Log Size.

As depicted in Figure 3 and Table 1, PBTs have a 30%
better performance at maximum occupancy rate at 3 ware-
houses in comparison to B2I at 2 warehouses. Furthermore,
PBTs have a relative constant performance between 2 to 5
warehouses in relation to B2I, where the performance de-
crease in a high factor. This results indicate that PBTs
have a better scalability and elasticity. Better performance
can be explained by well cached new Index-Records and a
sequential write I/O pattern.

Evidences for write optimization are depicted in Figure
4 (for a specific update intensive index) and Table 2 (in-
cludes all indexes in TPC-C schema and was accumulated
over the whole test duration). PBTs write only file extends
and some modified inner nodes to secondary storage until
time 2000sec, where a sequential write of a partition evic-
tion happens (see Figure 4). Write I/O pattern of B2I is
random over all index nodes. The average write I/O size
of PBT is constant between 14 and 16 sequentially written
pages, B2I has a relatively good rate at 1 warehouse, because
evictions are rare for this database- / buffer cache-size ra-
tio – checkpoints result in most write I/O. For bigger sizes,

PBT Write I/O

B2I Write I/O

sequential write

Bl
oc

k
O

ffs
et

 (i
n

bn
)

Bl
oc

k
O

ffs
et

 (i
n

bn
)

time in seconds
0 500 1000 1500 20001500

0 500 1000 20001500

496

495

497

498

499

484

480

488

492

496

500

Figure 4: Write I/O Pattern – PBT vs. B2I

Warehouses 1 2 3 4 5 6

PBT

Total Written GB 1.16 1.87 1.87 1.85 1.80 1.63
Disk Write I/O *1k 19.25 30.9 33.4 33.9 32.7 29.1
File Write I/O *1k 328.7 534.3 533.1 532.0 514.3 466.7

AVG I/O Size 15.75 15.86 14.66 14.30 14.41 14.68

B2I

Total Written GB 1.49 2.87 3.27 2.81 2.91 2.81
Disk Write I/O *1k 58.1 250.4 356.0 341.2 321.2 352.7
File Write I/O *1k 435.9 994.9 1227.9 1093.8 1131.1 1104.4

AVG I/O Size 6.70 3.00 2.41 2.31 2.38 2.09

Table 2: TPC-C Write I/O Statistics (all indexes)

the average sequentially written pages are less than 3. Total
written data is for B2I much higher than for PBT, in con-
tempt of less performance, what is an indicator for a high
write amplification in B2I.

5. SUMMARY AND CONCLUSION
Directing data modifications in an index to main mem-

ory, e.g. in a partition in PBT-Buffer, enables PBT to per-
form near optimal write I/O patterns for update intensive
transactional workloads, like TPC-C. The sequential write
I/O pattern and a low write amplification are beneficial for
performance and durability of secondary storage media tech-
nologies. Recently inserted Index-Records are well cached in
main memory and enable noteworthy look-up performance
for this workload.

6. ACKNOWLEDGMENTS
The authors wish to thank Goetz Graefe for the support

and the valuable comments. This research was partially
funded by the Ministry of Science of Baden-Württemberg,
Germany, for the Doctoral Program ’Services Computing’.

7. REFERENCES
[1] G. Graefe. Sorting and indexing with partitioned

b-trees. In CIDR, 2003.

[2] G. Graefe. Write-optimized b-trees. pages 672–683.
VLDB Endowment, 2004.

[3] G. Graefe. Modern b-tree techniques. Foundations and
Trends in Databases, 3(4):203–402, 2011.

[4] G. Graefe and H. Kuno. Adaptive indexing for
relational keys. In In ICDE, Workshops, 2010.

[5] P. L. Lehman and s. B. Yao. Efficient locking for
concurrent operations on b-trees. TODS, 6(4), 1981.

[6] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, June 1996.

[7] R. Sears and R. Ramakrishnan. blsm: A general
purpose log structured merge tree. In In Proc.
SIGMOD ’12.

