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Abstract
Blockchains yield to new workloads in database management systems

and K/V-Stores. Distributed Ledger Technology (DLT) is a technique for
managing transactions in ’trustless’ distributed systems. Yet, clients of
nodes in blockchain networks are backed by ’trustworthy’ K/V-Stores, like
LevelDB or RocksDB in Ethereum, which are based on Log-Structured
Merge Trees (LSM-Trees). However, LSM-Trees do not fully match the
properties of blockchains and enterprise workloads.

In this paper, we claim that Partitioned B-Trees (PBT) fit the proper-
ties of this DLT: uniformly distributed hash keys, immutability, consensus,
invalid blocks, unspent and off-chain transactions, reorganization and data
state / version ordering in a distributed log-structure. PBT can locate
records of newly inserted key-value pairs, as well as data of unspent transac-
tions, in separate partitions in main memory. Once several blocks acquire
consensus, PBTs evict a whole partition, which becomes immutable, to sec-
ondary storage. This behavior minimizes write amplification and enables
a beneficial sequential write pattern on modern hardware. Furthermore,
DLT implicate some type of log-based versioning. PBTs can serve as
MV-Store for data storage of logical blocks and indexing in multi-version
concurrency control (MVCC) transaction processing.

1 Introduction
In academia and commercial applications blockchains get growing attention as a
possible technology for Distributed Ledgers. The cryptocurrencies Bitcoin[1, 2],
as avantgarde of blockchains, and Ethereum[3, 4], which is more powerful, due
to trustworthy executable code in smart contracts, enable secure transaction
processing in ’trustless’ distributed peer-to-peer networks by proof of consensus.
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We give an overview of a blockchain network (depicted Fig. 1). Blockchains
constitute a backward linked list of blocks, containing transactions. A blockchain
network consists of several nodes. A blockchain is entirely replicated to each node.
On every node, a blockchain network client is implemented (e.g Bitcoin-Core[5],
Geth[6], Parity[7]). Clients are responsible for any operation to interact with the
network. K/V-Stores are the backbone of clients and manage blockchain (meta)
data and indexes. Indexes are necessary for data retrieval in the log-based DLT,
without scanning the whole blockchain. Businesses may include blockchain data
in their enterprise systems, by maintaining a virtual node and avoiding slow
messaging requests or ETL-processes (depicted Fig. 2). A virtual node is part
of the blockchain network, hosted by the enterprise system.
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Figure 1: Blockchain Technology loosely coupled with Enterprise Systems:
Blockchain data is separated from indexes and meta data in K/V-Stores. Enter-
prise systems have to interact with the blockchain network by messaging services
to a network client of a node. Current architecture, format conversions, etc.
result in high latencies and stagnation in business processes.

Accounts (human or machine) are able to negotiate the pricing for services
in smart contracts and post these unspent transactions to the Distribted Ledger
network. Miners in Bitcoin or validators in Ethereum (a special type of node)
collect transactions and check for prerequisites (e.g. if the account’s balance is
sufficient) for accomplishing. Several transactions are collected and added to a
block built up on hashes. The validator tries to append the created block at the
end of the blockchain, containing a backward link to the latest block, its hash.
New blocks are synchronized to every node in the blockchain network. If the
block is approved by the network, the validator gets higher priority. There are
several models for this process of consensus. Once a block was appended to the
blockchain, it is impossible to modify covered transactions and data because the
hash value of the block would change. Blocks may get rejected by the community
and reorganizations are required.

Characteristics of Blockchain Data. Uniformly distributed hash values of
blockchain data, e.g accounts, transactions, and smart contracts, are stored in
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Figure 2: Blockchain Technology included in Enterprise Systems: Including
the K/V-Store in an enterprise system as a database reduce latencies, format
conversions, etc. to a minimum. Therefore, a powerful and flexible data and
indexing structure is required in K/V-Stores, that is able to store and manage
all data of a blockchain in a ”Logical Blocks” schema. It is not necessary to
physically store blocks separated from indexing. Required data can be directly
accessed by the enterprise system, if all required data is located in the K/V-Store.
Decrypted information can be stored in authorized tablespaces, whereby range
scans are supported

blocks of a blockchain. Each transaction is analogous to a log-based version
state in the Distributed Ledger. Newer data is stored in newer blocks. Blocks
retaining consensus (based on the consensus model) as immutable data. Recently
appended blocks are maybe rejected by the network and their data becomes
invalid and / or reorganized. Unspent transactions are not immediately added
to the blockchain, but have to be validated and processed first.

Although appending transactions to a blockchain perform well, there is a
scalability bottleneck in blockchain networks, handling every transaction on-
chain, as these transactions have to be broadcasted to the whole network. Low
throughput1 depends on these bottlenecks and consensus models (PoW, PoS, ...).
Techniques like sharding[12] and off-chain transactions[11], based on smart con-
tracts (ERC20 Tokens) can improve throughput and scale linear with the number
of users in the network[10]. Moreover, private blockchains (like Hyperledger[13])
outperform public ones, due to lower complexity in consensus models [14]. Query-
ing a blockchain is a much harder task with linear complexity, because in theory
the whole blockchain has to be processed for data reconstruction, back to its
initial block. For this and further purposes, clients of nodes in the blockchain
network are backed by K/V-Stores. In Ethereum for instance, Geth applies

1Bitcoin can handle about 7 transactions per second (tps)[8] and Ethereum about 15 tps[9].
Payment systems like Paypal (115 tps in average) and VISA (peak at 47.000 tps)[8] allow an
order of magnitude more tps, than blockchain based ones. Raiden[10] is in development which
uses Ethereum smart contracts to increase throughput by off-chain transactions, promised to
scale with number of users[11].
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LevelDB[15] and Parity makes use of RocksDB[16]. Both K/V-Stores are built
up on Log-Structured Merge Trees (LSM-Trees).

Although, LSM-Trees can handle high update rates well, their characteristics
do not match the properties of blockchain data ordering. Mixed workloads,
comprising payloads on the blockchain network and enterprise OLTP and OLAP
workloads on virtual nodes in the network (as depicted in Fig. 2 and outlined
in Section 6), will exceed performance of current K/V-Stores, if their data
structures do not fully leverage characteristics of modern processing and storage
technologies (outlined in Section 2) as well as properties of blockchain data.

In this paper, we claim that Partitioned B-Trees (PBT) [17] are able to
overcome complexity of DLTs, handling mixed OLTP and OLAP workloads
from enterprise systems in K/V-Stores, and leverage characteristics of modern
hardware, due to their flexible partition management in one single index structure.

First, we give a short introduction in the characteristics of modern hardware
technologies in Section 2 and outline the state of the art data structure LSM-Tree
and the suggested data structure Partitioned B-Trees in Section 3. In Section
4, we compare both data structures in handling the complexities of blockchain
data and how they perform as schema and indexing data structures in Section 5.
Finally, we investigate workloads from enterprise systems on both data structures
in Section 6.

2 Modern Hardware Technologies
Architectures and algorithms are optimized for characteristics of traditional
hardware. Only two levels of the memory hierarchy were focused in database
management system algorithms - main memory and disk[18]. There was a low
relation in capacity and a huge access gap due to high latencies of disks (depicted
in Fig. 3). Algorithms like the ubiquitous B+-Tree[19] are optimized for this
access gap.

Several trends in hardware technologies lead to rethinking of traditional ar-
chitectures and algorithms. Developments in computing and storage technologies
as well as increased main memory volumes require reflections of an optimal
utilization of layers in the memory hierarchy and parallel computing concepts.

In contrast to traditional architectures, more levels in the memory hierarchy
have to be considered and evaluated (depicted in Fig. 3). The number of
cores within CPUs increase permanently, GPUs are used for computing in
general purpose and field programmable gate arrays (FPGAs) allow processing
enormous amounts of data in-situ. In general, these trends lead to higher levels
of parallelism and improved computing performance. Minimizing idle times of
processing units by optimizing data placement in modern memory hierarchies
as well as leveraging characteristics of storage technologies should be focused in
DBMS and K/V-Store algorithms and data structures.

Non-volatile semiconductors, like non-volatile memories (NVM) and solid
state drives (SSD / Flash), distinguish from characteristics in several ways.
There is an asymmetry in latencies of reading and writing data. Furthermore,
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Figure 3: Complex Memory Hierarchy in modern Hardware

writes wear out storage cells and reduce the longevity of a storage medium. Like
DRAM, NVMs are byte-addressable, but persist data even after a power loss.
However, they suffer of higher I/O latencies. SSDs / Flash have shorter latencies
than disks and a high internal parallelism. Sequential writes benefit latencies as
well as data placement in blocks. Updates are undesirably stored out-of-place in
new pages, and as a result, garbage collection has to be performed and write
amplification increase.

Data structures need to leverage complex memory hierarchies and develop-
ments in processing technologies. Modifications can be performed well in main
memory, due to short symmetric latencies for reads as well as writes. Data
located in NVMs and SSDs should stay immutable, due to high asymmetric
latencies in writes and wear. Furthermore, immutable data on secondary stor-
age enable a good configuration for Near-data Processing (NDP) on FPGAs.
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Result sets can be computed in-situ and propagated to main memory without
considerations about concurrent updates in CPU caches or RAM.

3 Overview: Data Structures
In this section, we give a short overview of the data structures and algorithms of
Log-Structured Merge Trees (LSM-Trees) [20] and Partitioned B-Trees (PBT)[17].

3.1 Log-Structured Merge Trees

PBT
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Figure 4: Structure of a LSM-Tree: Several components are placed on different
levels in memory hierarchy and maintain a separate index structure. C0 memtable
absorbs updates in main memory. Merges reduce number of components and
enable garbage collection. Version ordering of blockchain data is intermingled as
part of evolvement on current workload and write amplification increase, due to
merges and rewrites of principally unchanged data.

LSM-Trees[20] are optimized for high random update rates, as well as bulk
loads, and achieve sequential write patterns to secondary storage media by
presorting inserted and updated data in a fixed sized C0 component, which is
located in main memory. Components (C1 to Cn) resident on secondary storage
media. The data structure is depicted in Fig. 4. Evictions of C0 component
and merge operations between all components are performed well in out-of-
place appends. LevelDB and RocksDB achieve this behavior by implementing
immutable sorted string tables (SST) on secondary storage and mutable indexes
and SST (memtable) in memory. SSTs are merged in a compaction procedure at
specific points in time.[15, 16]

Read amplification increases with every new component, what result in
inacceptable look-up and scan performance [21]. Each component maintains its
own (tree-based) index structure. Components are sequentially processed from
C0 to Cn, until a matching record is found. Merges lower the effects of read
amplification, but increase write amplification undesirably. In a write-heavy
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workload2 more components are created and have to be merged. The main
memory C0 component gets full, before merge operations terminated. It is
flushed to secondary storage and reclaims space in main memory for further
updates. The more components are created, the more already written data
has to be merged for acceptable read performance. Secondary storage media is
stressed by merge operations, of in principle unchanged, immutable and uniformly
distributed hash-key data in a blockchain workload. Read amplification can be
further reduced by bloom filters and reduction of components with intelligent
merge scheduling in bLSM-Trees [21].

Scheduling merges of uniformly distributed hash-key values is difficult, be-
cause there is no mentionable skew in workloads. Keys always overlap and all
data of components is processed and appended in a merged component. This
behavior increases write amplification and does not match the version data
ordering characteristic of blockchain data. Furthermore, unspent transactions
and data of rejected blocks bring more problems to the LSM-Tree. Modifiable
records may be evicted to secondary storage media or merged with further
components. This records are updated by insertions of replacement records and
garbage collected on merge operations.

Predefined component size thresholds lead to more existing components and
separation of data as actually required. More data has to be moved and merged
to unwind components. Furthermore, administrative effort is necessary to define
these thresholds in a complex schema. With static thresholds in component sizes,
it is impossible for the K/V-Store to react on switches in workload. Self-balancing
component size thresholds would be more valuable.

In a short resume, LSM-Trees enhance throughput for random update-
intensive workloads, due to a beneficial sequential write pattern on secondary
storage media and modifications in main memory, at the cost of look-up perfor-
mance. Merge operations in compaction procedures lead to undesirable high
write amplification of actually unchanged data. Switches in workloads are not
supported, due to inflexible component size thresholds.

3.2 Partitioned B-Trees
We implemented and extended the Partitioned B-Tree (PBT) [17] as an adaption
of the traditional B+-Tree, outlined in [22]. PBT makes use of most B+-Tree
algorithms, with few modifications. The essential difference is the introduction of
an artificial leading search key column – the partition number. A record consists
of a partition number, its search key columns and a record-id for indexing or
a string of values for data storage. Every partition number uniquely identifies
a single partition. This idea enables the PBT to maintain partitions within
one single sorted tree structure and reusing existing algorithmic optimizations,
buffering, etc. Partition numbers are transparent for higher database layers and
each PBT maintains partitions independent from other PBTs. Partitions appear

2Using a blockchain for transaction management, e.g. in an IoT-scenario or payment system
with off-chain transactions, implies an update-intensive workload on a nodes K/V-Store.
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and vanish as simple as inserting or deleting records and can be reorganized
and optimized on-line in merge steps, depending on workloads [17]. Partitioning
data within a single B+-Tree enables several possible applications (outlined
in [17, 22]). In this paper, we focus on workloads in the outlined blockchain
enterprise system scenario.

PBT-Index
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PBT-Buffer
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in-memory Partition

Figure 5: Structure of a Partitioned B-Tree: Each partition is part of a common
index structure. Partitions are located on different levels in memory hierarchy.
Updates are absorbed in main memory by a mutable partition. Further complexity
can be handled by additional active partitions. Partitions on secondary storage
are immutable and cannot be modified from current workload. Version ordering
of blockchain data buoys, but can be reorganized for query performance in internal
transactions, as well as Cached Partitions can be created from result sets of
frequently queried data and reduce read amplification.

Traditional B+-Trees tend to have the disadvantage of a high write amplifi-
cation[22], especially for uniformly distributed hash-key values without mention-
able skew, like in a blockchain workload. PBTs write any modification of records
exactly once at eviction time of the respective partition, except for subsequently
performed reorganization or garbage collection operations. This is realized by
forcing sequential writes of all leaf pages of an entire partition. The operation is
illustrated in Fig. 5. Leaf nodes of a mutable partition are stored in a separate
area of the database buffer – the PBT-Buffer. The PBT-Buffer is shared for all
PBTs in a database for balancing partition sizes based on workloads. Records can
be inserted, updated and deleted only in mutable partitions in the PBT-Buffer.
Once the PBT-Buffer gets full, it selects a victim partition, which becomes
immutable, and writes it sequentially to secondary storage. A simple well sized
bloom filter is created as part of the eviction process.[22]

The entries of a PBT-Buffer resident partition are also part of the higher
levels of the PBT index. Hence, they are traversed as part of any look-up
operation first.

It is fair to say, that all modifications are cached and leaf pages have a
near optimal write amplification. Inner nodes in the PBT are passed to the
regular cache logic. In fact, that modifications are applied to its latest mutable
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partitions, as well as look-ups are also directed to high numbered partitions
first, these inner nodes are cached as well and evictions are very rare for most
replacement policies. As a result, write amplification of inner nodes is low and
traversals are fast.

Updates of already written data in previous partitions require an out-of-
place invalidation. Inserting a Replacement-Record in the mutable partition is
sufficient. Deleting a record in an immutable partition requires an insertion of an
Anti-Record in the new partition [17]. Therefore, Replacement-Records can be
viewed as a combination of an Anti-Record and a newly inserted Index-Record,
if its search key changes. In the search algorithm, Anti-Records matching to the
search criteria can be collected and invalidated Index-Records can be excluded
from the result set. This is possible, because the PBT starts probing the latest
partition and ends up in the oldest partition, except the search algorithm can
break up earlier [22]. In case of unique hash keys like in blockchain data, the
algorithm can break on the first matching Index- or Replacement-Record.

Probing every partition leads to a higher read amplification by a factor of
the partitions count in comparison to a traditional B+-Tree. There is a certain
impact on performance, because well sized bloom filters protect immutable
partitions from unnecessary traversals. Newly inserted data is well buffered in
main memory and data can be reorganized [22]. Cached Partitions can be built
up on frequently queried data and located in main memory. Records in Cached
Partitions are of the Replacement-Record type. As a result, frequently queried
data can be found without processing further partitions. In case of switches in
the workload, Cached Partitions can be easily cropped from the tree structure
without data loss. If it is valuable to keep Cached Partitions, e.g. for OLAP,
it is possible to evict them to secondary storage. If the key range of a Cached
Partition is large enough one or more partitions (which are in the key range
of the Cached Partition) can be cropped from the tree structure and occupied
space can be freed. This is one possible approach for garbage collection in PBT.
Furthermore, modern storage media support fast reads and FPGAs enable in-situ
data processing.

Additional mutable partitions can be maintained for a PBT in main memory.
These partitions can handle further complexity in workloads from blockchain
data, such as bulk loads (data from recently appended blocks) and unspent
transactions (mutable data, which is not yet appended to a block), in respect
to characteristics of modern hardware technologies as outlined in Section 4. In
a bulk load, data can be absorbed by a separate partition with low effects on
current workload and merged in-memory on commit time. If the transaction
fails, the entire partition can be cropped from the tree structure in one single
step, because data is not intermingled with data from other transactions.

When maintaining further mutable partitions, it is possible for a PBT to
serve as a version store in multi version concurrency control (MVCC). Therefore,
a timestamp, either for validation or invalidation, based on the record type, can
be maintained for every record. Consequently, Multi-Version PBTs (MVPBTs)
are able to perform index-only visibility checks [17, 23].

PBT seems to be a flexible data structure, that matches characteristics
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of modern hardware technologies, as well as mixed workloads in a blockchain
enterprise system scenario. Flexible partition management (including partition
sizes, which are based on current workload and resources; separation of mutable
and immutable data in different in-memory partitions; out-of-place updates in
mutable partitions; etc.) minimize write amplification and enable a beneficial
sequential write pattern on secondary storage media. Cached Partitions, simple
bloom filters and asymmetric fast reads from secondary storage media guarantee
acceptable look-up and scan performance. Garbage collection is performed, if
required, decoupled from current workload.

4 Blockchain Data Storage
Clients of nodes in Ethereum are backed by K/V-Stores, like LevelDB or RocksDB,
which are based on LSM-Trees for storage. As outlined in Section 3.1, LSM-Trees
are not optimal for storing blockchain data, due to high write amplification
of immutable data on merge operations. Partitioned B-Trees (PBT) leverage
characteristics of blockchain data and modern hardware technologies. This
enables PBT to store logical blocks of the blockchain as well as provide further
indexes for query optimization from enterprise workloads (this configuration is
depicted in Fig. 2).

In the following we compare the effect of LSM-trees and PBT with respect to
different blockchain properties / features such as: storing uniformly distributed
hash-keys, immutability and consensus, invalid blocks and reorganization, un-
spent and off-chain transactions, log-structured data version and state ordering,
distributed operations and node synchronization.

Uniformly distributed hash-keys. Data in blockchains is identified by
unique hash-keys. These hashes exhibit uniform distribution in a range of
keys. B+-Trees are predestined for querying and scanning data with logarithmic
complexity. Unfortunately, modifications, like inserts or updates, of uniformly
distributed keys result in poor performance, due to high write amplification on
eviction of modified leaf pages and structure modifications. Hash-based struc-
tures guarantee faster look-ups for point queries, but do not support scans and
result in a similar undesirable random write pattern on secondary storage. LSM-
Trees overcome this problem by presorting keys of the current load in-memory
and writing out components. Complexity in query and scan data is amplified by
the number of components, thus merges have to be performed. PBTs handle
modifications almost like LSM-Trees, due to its in-memory PBT-Buffer, that
absorbs current updates. Bloom filters reduce complexity in querying data in
PBT, a technique that is also applied for LSM-Trees in RocksDB. The major
benefit of PBT is the single index structure for all partitions, because capacity
and height of the tree are in a logarithmic relation. Several small components in
a LSM-Tree require more index nodes than one single component. For large data
sets, the tree height of each component is similar to the absolute height of a PBT.
Index nodes are commonly processed and buffered in a single index structure.
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As a result, traversal operations in a LSM-Tree are more expensive than in a
PBT. Furthermore, recently inserted data is guaranteed to be located in a higher
numbered partition, that is queried first. Due to this fact, skewed reads of unique
hash-keys can be answered in-memory. If the partition of a frequently requested
record is evicted to secondary storage, a Replacement-Record is inserted in a
Cached Partition in main memory. LSM-Trees maybe evict their comprising
component or merge it with further components on secondary storage.

Immutability and Consensus of Blockchain. Every appended block in a
blockchain is immutable. Blocks can accomplish consensus, based on several
models. As a result, data of confirmed blocks in a K/V-Store require a similar
behavior for resource-gentle storage. LSM-Trees manage data in components,
which are merged and already persisted data have to be rewritten to secondary
storage media, whereby write amplification undesirably increase. Evicted par-
titions in PBTs and most of its index nodes remain immutable on secondary
storage, similar to confirmed blocks (and comprised data) in a blockchain. For
query optimization, partitions can be reorganized and merged, like components
in a LSM-Tree. These operations can be decoupled from current workload, e.g.
in times of low occupancy. Partition sizes flexibly depend on current workload
and storage resources in contrast to fixed thresholds of LSM-Trees. Flexible
partition sizes and merge operations decoupled from current workload reduce
write amplification. Furthermore, in PBT, frequently queried data and key
ranges can be applied to a main memory partition for fast look-ups. Cached
Partitions contain replacement records for this data. As a consequence, further
partitions do not have to be traversed and queries can be answered in-memory.
In case of workload switches, Cached Partitions can easily be cropped from the
tree-structure, if it is not valuable to keep it in main memory. Moreover, if
intelligent storage is used, large parts of data processing, e.g. in case of OLAP
queries, can be performed in-situ using Near-data Processing (NDP) techniques,
to avoid expensive data transfers and increase performance. Outlined techniques
minimize required merge operations and write amplification for PBT.

Invalid Blocks and Reorganization. Recently appended blocks in a block-
chain may get rejected by the network, e.g. in case of forking, not feasible
transactions, etc., and force reorganizations. In a K/V-Store, data from such
blocks is to be marked as invalid and eventually get pruned. Forks, however,
can span several blocks and therefore the amount of invalid data can be high.
[24] suggest to index only data of consensual blocks in a linked data index
for performance improvement, because of enormous effort in handling these
issues. This strategy imposes further complexity, while sequentially scanning
the newest blocks in a blockchain. LSM-Trees may have evicted a component,
which handles data of these blocks, or even worse, already merged it with further
components. Removing this data requires invalidation via tombstone records
in the C0 component and merges with further components. PBTs can handle
this complexity by maintaining more in-memory partitions, containing data of
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recently appended blocks. Once a block is appended to a blockchain, its data is
applied to an empty partition in a bulk load operation. If a block gets rejected
by the network, a partition, which is handling its data, can easily be cropped
from the structure. Data in partitions of consensual blocks can be moved in the
regular in-memory partition in a further merge operation.

Unspent Transactions in the Network. Unspent transactions are coming
up next for processing in the network, but are not yet part of the blockchain.
These transactions are relevant for miners / validators as well as provider of
enterprise services for forecasting and acceleration of pre-processes (as outlined
in Section 6). Unspent transactions may get appended to a new block, stay long
time unprocessed, or even never get processed. K/V-Stores should be able to
handle unspent transactions. LSM-Trees include data from unspent transactions
in the main store or require a separate data structure. The location as well as
the processing time is unknown, therefore in meantime, data can change or get
invalidated. LSM-Trees may evict or merge data of unspent transactions and
require to insert replacement or tombstone records and further merges. PBTs, on
the other hand, collect unspent transactions in a separate partition in-memory
and migrate them to further in-memory partitions at processing time.

Off-Chain Transactions via Smart Contracts. Ethereum provides the
possibility to conclude smart contracts. These functions can be used to accom-
plish off-chain transactions, e.g. exchanging tokens in Raiden[10]. Off-chain
transactions do not require consensus by the common blockchain network and
scale with the number of users, which accomplished such types of smart contracts
in-chain. Enterprises may include this workloads in the K/V-Store of their virtual
node. LSM-Trees are able to absorb high update rates of such workloads by
the C0 in-memory component. PBTs have a mutable partition in main memory,
which absorbs high update rates, like a C0 component in LSM-Trees. PBTs use
a common index structure for all partitions (as outlined in Section 3.2). As a
result, queries and scans benefit from common processing and buffering of index
nodes (as already described in Paragraph Uniformly distributed hash-keys). As
a result, PBT handle high update rates similar to LSM-Trees, but benefit from
cheaper traversal operations.

Log-Structured Data Version Ordering in the Blockchain. Over time,
blockchains grow from an initial block up to a backward linked list. Every new
block contains a backwards link to a predecessor block (its hash value). As a
result, old and maybe "cold" data states / versions reside in old blocks near to
the initial block in the ledger. New and "hot" data states / versions are located
at the “hot” end of the list. Data structures in a K/V-Store should adopt this
characteristic. LSM-Trees typically lose this property as they evolve over time,
because of the regular merge operations. Data is migrated from in-memory C0
component to further components (C1 to Cn) on secondary storage devices. As a
result, "cold" and "hot" data are intermingled in large persistent components on
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secondary storage. PBTs are able to merge intrinsically immutable partitions for
better read performance, yet it is also possible to keep data ordering in line with
the blockchain ordering (as depicted in Fig. 6). Recently inserted data is located
in newer partitions, which are queried first. These partitions can be located in
main memory as well as in fast non-volatile memories, and can be aged out to
slower, but cheaper, storage devices over time. If older data is frequently queried,
it is possible to locate it in a Cached Partition in-memory with replacement
records, so requests on older partitions on slower storage devices are rare. For
analytical processing of data, FPGAs can process immutable partitions near its
storage location and result sets can be propagated to CPU and merged in one
single step.

HOT

PBT

      time

COLD HOTCOLD

Figure 6: Partitioned B-Trees and Blockchains Data Version Ordering is in line.

Distributed Operations. In a distributed ledger, blocks are created and
processed from different nodes and synchronized over the entire network. This
is possible because of the immutability of a block. Synchronizing K/V-Store
operations is not that easy. It is cheaper to process small operations (e.g.
insertions in a SST) on every node in main memory, rather than share effort and
synchronize it with further K/V-Stores. PBTs perform current workload also on
every node. Reorganization activities enable distributed processing, because of
the immutability of partitions. For query optimization a low occupancy node can
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be instructed to merge several partitions and broadcast leaf nodes of one merged
partition over the network. This work could also be shared based on key spans.
Furthermore, nodes can build index pages within the partition and assimilate the
subtree. Afterwards, merged partitions can be cropped from the tree-structure
concurrently with low effects on current workload. Partition management is
performed on every node based on system and hardware configurations, so
partition sizes and data ordering may differ. Correctness is guaranteed, because
only immutable partitions are merged and records in high numbered partitions
replace data of low numbered ones. If a partition of a further node is not fully
merged, it would not be cropped from the tree structure and data remains entirely
consistent. With versioning information about block hashes of the immutable
blockchain, fully merged partitions can be easily identified.

Node Synchronization. Physical blocks can be replicated to further nodes
with low effort. The hash identifier of the latest block is required and all successor
blocks can be sequentially read and synchronized. When storing blocks of a
blockchain logically in the K/V-Store, replication to further nodes becomes a
problem. New nodes are added to the blockchain network or long-serving nodes
come up after a crash or version update. Blocks have to be replicated to this
nodes. The data structure, which contains logical blocks, should consider their
version ordering for fast synchronization. LSM-Trees intermingled blocks version
order, because of merge operations. Blocks are stored by hash value, rather than
processing time. Replications result in random read I/O along all components
for restoring block after block in a sequential order. PBTs do not have to process
every specific block. When a node comes up, it requests for the actual chain
state by broadcasting its latest block hash. A further node can search for the
partition, that contains this block. The node submit all data in this and successor
partitions to the upcoming node in one step. Synchronization units change from
blocks up to partitions. If blocks are already indexed in the upcoming node,
the blocks in the synchronized partition replaces this hashes. Data remains
consistent and can be reorganized and garbage collected in a further merge step.
The upcoming node is faster on the current state, compared to a sequential block
after block reconstruction, even if data placement is not optimal. Moreover,
while synchronizing partitions of predecessor blocks, current workload can be
processed in a separate partition.

5 Blockchain Schema and Indexing
Blockchains consist not only of transactions, but also of blocks, accounts, smart
contracts, and possibly of tokenized off-chain data, which are related to each
other (e.g. the user of account A sends B in transactions T credits for a service
defined in contract C ). This linked data implies a schema and further indexing
for processing and analysis. We list some use cases:
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Schema Data. Miners / Validators require to validate transactions, before
adding them to a block, otherwise blocks may get rejected by the network and
processing effort is wasted. Coins / gas or tokens in smart contracts of accounts
need to be verified to accomplish transactions. Such transactions in a K/V-Store
require to meet serializable ACID properties. Current balances of accounts
need to be known. Multi-Version Concurrency Control (MVCC) can improve
performance in this constellation. LSM-Trees are not able to handle multi version
data natively. MV-PBTs are able to maintain multi version data and perform
visibility checks, if one timestamp is added to each data record for validation or
invalidation time (based on record type) and new tuple versions are added in
higher numbered partitions[17, 23]. Therefore, several mutable partitions are
maintained in main memory to absorb version ordering. Accounts balance can
be determined without blocking concurrent transactions in serializable snapshot
isolation.

Schema Indexing. Data in blockchains is described by a schema. Trans-
actions send credits from one account A to another account B. But what are
the transactions of account A? LSM-Trees and PBTs are able to index multi
column records and answer partial key look-ups, but their column ordering has
to match the search predicates. Additional indexes in the K/V-Store can solve
this problem and improve search performance[24]. With PBT several indexes
can be created, based on query requirements. PBTs are expected to have a
similar update performance like LSM-Trees, because modifications are performed
in a mutable in-memory partition, with benefits due to less required index nodes
and flexible reorganization. Furthermore, PBTs are able to operate as version
store. With bloom filter-protected immutable partitions, near B+-Tree-like query
performance with LSM-Tree-like update throughput enables a fully indexed
data schema in traditional concurrency control protocols as well as in MVCC.
Complexity in smart contracts may increase and is integrated in enterprise
architectures, therefore fast analytics are required.

6 Enterprise Workload
In a business landscape, public blockchains offer new markets to customers.
Smart contracts enable deployment of business logics on the blockchain, but
transactions and further data have to be integrated in evolved enterprise systems,
such as enterprise resource planning (ERP), customer relationship management
(CRM), supply chain management (SCM), product life cycle management (PLM)
and business intelligence reporting (BI). These enterprise systems may are
connected via private blockchains in a ”trustworthy” environment[25], such as
Hyperledger[26], which also applies LevelDB as K/V-Store. Data gathering from
markets of blockchain can be solved by ETL processes (Extraction, Transforma-
tion, Load), but it is desirable to integrate and subsume blockchain technologies
into larger and evolved systems.

In both scenarios, a messaging service based integration (as depicted in Fig.
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1) is not suitable for large data sets, due to high latencies in complex look-ups
and type conversions. The enterprise system sends a query command to the
blockchain network node client. The client can check indexes in the K/V-Store,
if the query search predicates match. If the queried data is located in the
K/V-Store, it can be returned in a string to the enterprise system, otherwise
the data location is returned to the client. Afterwards, the client looks-up the
physical block outside of the K/V-Store. Required data in this block is read and
converted to a string, which is returned to the enterprise system. This process is
repeated for every record tuple.

Storing blocks logically in the K/V-Store (as depicted in Fig. 2) enables
fast look-ups. The K/V-Store can be directly queried by the enterprise system.
Values can be identified by keys in data and indexing structures. Result sets can
be calculated and returned to the enterprise system. For this workloads, data
and indexing structures have to leverage characteristics of blockchain data and
modern hardware technologies.

ETL processes would not stress blockchains K/V-Stores on queries from
enterprise systems. Data can be extracted once to an enterprise system, while
post-processing can be handled on its database. In this case, extractions scan
PBTs high numbered partitions, containing new and not yet extracted data.
Already extracted data located in low numbered partitions has not to be pro-
cessed. LSM-Trees may intermingled already loaded and new data, due to
merge operations, and all components have to be processed. ETL processes
result in a delay on load phases and data has to be loaded to every enterprise
system. Management come to decisions based on may obsolete data. Transaction
processing and resource planning in the enterprise systems (e.g. sales processes
of real goods or not in the blockchain integrated services by smart contracts)
stagnate between load phases. Fundamental blockchain characteristics, such
as unspent transactions (outlined in Section 4) are lost in enterprise systems.
Furthermore, K/V-Stores on blockchain nodes are principally able to handle
workloads from enterprise systems, especially if schema and indexing is provided
as outlined in Section 5.

Enterprise systems may integrate blockchains by connecting to their nodes
K/V-Stores as depicted in Fig. 2. Transactions immediately become visible
to enterprise systems, without any delay for processing transactions, resource
planning and data gathering for management decisions.

Starting a business process from a blockchain transaction from smart contracts
may include several enterprise systems, because of its complexity and evolved
system landscape. Pricing of services or material goods may differ for customers
or requests, based on turnover or market demarcation. As a pre-process, a smart
contract can request the special pricing from the CRM or the actual pricing of a
service from the suppliers SCM to negotiate the price in unspent or off-chain
transactions. Furthermore, required resources can be planned in an ERP before
the transaction was appended in a consensual block in the blockchain. PBTs are
more flexible than LSM-Trees in data placement. Due to uniformly distributed
hash-keys in the blockchain, LSM-Trees are not able to plan merges efficiently.
Components with data of unspent transactions are evicted to secondary storage
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or merged with further components. PBTs can handle business complexity by
partitions located in main memory and accelerate processes.

While OLTP workloads are processed on the system, on-line analytical
processing (OLAP) is performed by business management. Queries are often
performed on equal search predicates and few variations in data ranges. Cached
Partitions in PBT can be built up on frequently queried data and stay in main
memory for fast look-ups and scans. Cached Partitions are created out of a
result set of an analytical scan. In fact, records buffered in Cached Partitions
replace records in lower numbered partitions, queries and scans require only to
process this and in-memory partitions, which absorb the current workload. If
Cached Partitions exceed the main memory, they can be evicted to a secondary
storage and FPGAs might be able to efficiently calculate result sets with NDP
techniques. Partitions keep track of record counts, so intermediate counts can be
calculated without processing every record, if the search key range is in the query
predicates range. For OLAP, tracking intermediate results can be applied to
sums or averages of payloads with only a little effort. Solely invalidated records
in higher numbered partitions have to be excluded from intermediate results.
LSM-Trees require to process every matching record in every component.

Mixed workloads require flexible data structures, which are able to lever-
age characteristics of modern hardware technologies. OLTP workloads from
blockchain network transaction processing require high update rates and ac-
ceptable look-up performance. OLAP workloads need a data organization for
fast look-ups and scans. An optimal data structure brings data placement
in complex memory hierarchies in balance for concurrent types of workloads.
Straight transaction processing of blockchain data is well performed in tradi-
tional concurrency control protocols, because transactions of consensual blocks
never change. Schema and indexing structures in a K/V-Store can benefit from
MVCC in serializable snapshot isolation levels, because transactions modify data
many times while querying data. Providing a snapshot for OLAP enables high
concurrent update rates from OLTP[27]. Matured DBMS for mixed workloads,
such as SAP HANA[28], implement MVCC protocols. LSM-Trees are neither
designed for mixed workloads nor support MVCC natively (outlined in Sections
3.1, 5). PBTs allow high update rates for transaction processing, and flexible
data placement and partition management for current mixed workloads. Cached
Partitions are created as result of query requirements. Simple but powerful
filters are calculated as part of the eviction process. Both speed up further
look-ups and scans. Immutable partitions on secondary storage enable NDP
with low complexity. By applying a transaction timestamp to records, MV-PBT
can serve as version store in MVCC. PBTs data structure leverage requirements
from blockchain and enterprise workloads and modern hardware technologies.

7 Conclusion
Blockchains need to be integrated in enterprise systems. K/V-Stores of main-
tained virtual nodes in the blockchain network can principally serve as a database

17



and can be subsumed by enterprise systems. Therefore, powerful data structures
are required to handle the complexity of the blockchain characteristics, must
fulfil the requirements of enterprise systems, and have to exploit the character-
istics of modern hardware technologies. Partitioned B-Trees (PBTs) are able
to leverage complex memory hierarchies, query and scan requirements from
enterprise systems as well as characteristics of blockchain data, due to their
partition management within a tree structure. Partitions can appear and vanish
as simple as inserting or deleting records. Moreover, they absorb high update
rates, bulk loads, additional complexity of non-consensual blocks, and unspent
transactions in main memory. Evicted partitions retain immutable data effi-
ciently on different storage media in complex memory hierarchies and enable
Near-data Processing (NDP) with intelligent storage. Synchronizations with
further nodes can be performed on partition level, not only in slow sequential
block appends. Filter techniques enable a near B+-Tree-like query performance.
This efficient design enables further schema and indexing for query requirements
of enterprise systems. State of the art data structures, like LSM-Trees, do not
fully meet these requirements.
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