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Abstract. Data analytics tasks on large datasets are computationally-
intensive and often demand the compute power of cluster environments.
Yet, data cleansing, preparation, dataset characterization and statistics
or metrics computation steps are frequent. These are mostly performed
ad hoc, in an explorative manner and mandate low response times. But,
such steps are I/O intensive and typically very slow due to low data
locality, inadequate interfaces and abstractions along the stack. These
typically result in prohibitively expensive scans of the full dataset and
transformations on interface boundaries.
In this paper we examine R as analytical tool, managing large persis-
tent datasets in Ceph, a wide-spread cluster file-system. We propose
nativeNDP – a framework for Near-Data Processing that pushes down
primitive R tasks and executes them in-situ, directly within the storage
device of a cluster-node. Across a range of data sizes, we show that na-
tiveNDP is more than an order of magnitude faster than other pushdown
alternatives.

Keywords: Near-Data Processing, In-Storage Processing, Cluster, Na-
tive Storage

1 Introduction

Modern datasets are large, with near-linear growth, driven by developments
in IoT, social media, cloud or mobile platforms. Analytical operations and ML
workloads result therefore in massive and sometimes repetitive scans of the entire
dataset. Furthermore, data preparation and cleansing cause expensive transfor-
mations, due to varying abstractions along the analytical stack. For example,
our experiments show that computing a simple sum on a scientific dataset in R
takes 1% of the total time, while the remaining 99% are spent for I/O and csv
format conversion.

Such data transfers, shuffling data across the memory hierarchy, have a neg-
ative impact on performance and scalability, and incur low resource efficiency
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and high energy consumption. The root cause for this phenomenon lies in the
typically low data locality as well as in traditional system architectures and al-
gorithms, designed according to the data-to-code principle. It requires data to be
transferred to the computing units to be processed, which is inherently bounded
by the von Neumann bottleneck. The negative impact is amplified by the slow-
down of Moore’s Law and the end of Dennard Scaling. The limited performance
and scalability is especially painful for nodes of high-performance cluster envi-
ronments with sufficient processing power to support computationally-intensive
analytics.
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Fig. 1: Three different options to execute analytical operations on a cluster en-
vironment. (1) Baseline: Execute on the client; (2) Pushdown Cluster: Execute
on a cluster’s node; (3) Pushdown NDP Device: Execute on the NDP Device of
a cluster’s node

Luckily, recent technological developments help to counter these drawbacks.
Firstly, hardware vendors can fabricate combinations of storage and compute
elements at reasonable costs. Secondly, this trend covers virtually all levels of
the memory hierarchy (e.g. IBM’s AMC for Processing-in-Memory, or Micron’s
HMC). Thirdly, the device-internal bandwidth and parallelism significantly ex-
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ceed the external ones (Device-To-Host), for non-volatile semiconductor (NVM,
Flash) storage devices.

Such intelligent storage allows for Near Data Processing (NDP) of analytics
operations, i.e. such operations are executed in-situ, close to where data is phys-
ically stored and transfer just the result sets, without moving the raw data. This
results in a code-to-data architecture.

Analytical operations are diverse and range from complex algorithms to ba-
sic mathematical, statistical or algebraic operations. In this paper we present
execution options for basic operations in nodes of clustered environments as
shown in Figure 1: (1) The computation is within the client and the cluster
node is used as part of a traditional distributed file system; (2) The operation
is transmitted to the cluster and processed within the cluster node itself; (3)
The operation is executed in-situ, within the NDP devices of the cluster’s node.
The investigated operations are simple, yet they clearly give evidence for the
NDP effects on internal bandwidth and the ease of system and network buses.
The execution of more extensive operations like betweenness centrality within
graphs or clustering and k-nearest neighbour searches are planed for future work.

The main contributions of this paper are:

– End-to-end integration of NDP interfaces throughout the entire system stack
– The performance evaluation shows improvements of NDP operation push-

down of at least 10x
– Analysis of the impact of and necessity for NDP-based abstractions and

interfaces.
– We identify the following aspects as the main drawbacks to implementing

NDP: Interfaces; Abstractions; ResultSet consumption semantics; DataLay-
out and NDP toolchain

The rest of the paper is structured as follows. Section 3 presents the architecture
of nativeNDP. In Section 4 we discuss the experimental design and performance
evaluation. We conclude in Section 5.

2 Related Work

The concept of Near-Data Processing is not new. Historically it is deeply rooted
in database machines [6, 3], developed in the 1970 and 1980s. [3] discuss ap-
proaches such as processor-per-track or processor-per-head as an early attempt
to combine magneto-mechanical storage and simple computing elements to pro-
cess data directly on mass storage and to reduce data transfers. Besides reliance
on proprietary and costly hardware, the I/O bandwidth and parallelism are
claimed to be the limiting factor to justify parallel DBMS [3]. While this conclu-
sion is not surprising, given the characteristics of magnetic/mechanical storage
combined with Amdahl’s balanced systems law [8], it is revised with modern
technologies. Modern semi-conductor storage technologies (NVM, Flash) are of-
fering high raw bandwidth and high levels of parallelism. [3] also raises the issue
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of temporal locality in database applications, which has already been questioned
earlier and is considered to be low in modern workloads, causing unnecessary
data transfers. Near-Data Processing presents an opportunity to address it.

The concept of Active Disk emerged towards the end of the 1990s. It is most
prominently represented by systems such as: Active Disk [2], IDISK [12], and
Active storage/disk [15]. While database machines attempted to execute fixed
primitive access operations, Active Disk targets executing application-specific
code on the drive. Active storage [15] relies on processor-per-disk architecture.
It yields significant performance benefits for I/O bound scans in terms of band-
width, parallelism and reduction of data transfers. IDISK [12], assume a higher
complexity of data processing operations compared to [15] and targets mainly
analytical workloads and business intelligence and DSS systems. Active Disc [2]
targets an architecture based on on-device processors and pushdown of custom
data-processing operations. [2] focuses on programming models and explores a
streaming-based programming model, expressing data intensive operations, as
so called disklets, which are pushed down and executed on the disk processor.

With the latest trend of applying different compute units, besides CPUs, to
accelerate database workloads, a more intelligent FPGA-based storage engine
for databases has been demonstrated with Ibex [19]. It focuses mainly on the
implementation of classical database operations on reprogrammable compute
units to satisfy their characteristics, such as parallelism and bandwidth. A com-
pletely distributed storage layer, targeting NDP on DRAM over the network,
is presented by Caribou [11]. Its shared-data model is replicated from the mas-
ter to the respective replica nodes using Zookeeper’s atomic broadcast. Utilising
bitmaps, Caribou is able to scan datasets with FPGAs only by the limiting factor
of the selection itself (low selectivity) or the network (high selectivity). More-
over, [5, 4, 14, 9] investigate further host-to-device interfaces for general-purpose
applications or specific workloads.

However, previous research focused mainly either on the concrete implemen-
tation of the reconfigurable hardware, or on single device instances. In this paper,
we attempt to combine both topics and focus on the abstraction and interfaces
necessary to complete an efficient NDP pushdown.

3 nativeNDP Framework

The architecture shown in Figure 2 presents a bird’s eye view of the essential
components, interfaces, and abstractions of the nativeNDP framework. An an-
alytical client executes an R script, triggering an analytical operation (filtering,
simple computation - SUM, AVG, STDDEV, or a clustering algorithm). It can
be processing can be processed on different levels of the system stack:

– directly in R (Figure 1–baseline). This is a classical approach, which can be
done with out-of-the-box software, requiring little overhead. The downside is
that the complete dataset needs to be transferred through the stack causing
excessive data transfers and posing significant memory pressure on the client.
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– within a Cluster node (Figure 1–pushdwon cluster). The same function can
be offloaded to the HPC cluster system and distributed across nodes. Hence
the compute and data transfer load can be reduced, but not eliminated as
such data transfers are preformed locally on a node.

– on the Storage Device (Figure 1–pushdown NDP dev). With NDP the oper-
ations are offloaded directly on the device, utilising the internal bandwidth,
parallelism and compute resources to reduce data transfers and improve la-
tency.
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Fig. 2: The high-level architecture showing the applied interfaces and data ab-
stractions along the access path for the three compared experiments: baseline,
pushdown cluster node, and pushdown device

3.1 System Stack

In the following we describe the layers of the analytical stack in more detail.
Client: We utilise R as one of the most popular client software for analytical

and statistical computation. To interact with the Ceph cluster and the under-
laying layers, we designed a custom R plugin, RCeph. It uses the RADOS API
[18] to connect against the cluster and is able to issue specific commands with
following features:

Put/Get of Files/Objects: To facilitate the first scenario, presented in figure
1, the dataset file has to be retrievable from the cluster. Therefore, the
standard file I/O API is reused. However, the transfer of results from the
second and third scenario necessitates further interfaces such as RADOS’s
provided Object API as explained in Section 3.2.

Pushdown of Domain-specific Operations: This feature is mainly addressed with
the second and third scenario, where domain-specific operations, usually ex-
ecuted within the client, are push down to either a cluster’s node or even
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throughout the node’s storage engine to the NDP Device. I.e. such domain-
specific operations comprise R-native operations on their storage abstraction
DataFrame or could even be extended to small algorithmic expressions.

Format Conversion: As interfaces and abstractions of lower levels often rely on
backwards-compatibility in nowadays complex systems, format conversions
of the results or CSV-encoded files and objects into the R-specific abstraction
DataFrame are necessary.

The RCeph is complied using Rcpp [7] to a plugin package and can be in-
stalled, loaded, and applied within the R runtime environment of the client.

Cluster: To process todays datasets with analytical or statistical workloads in
an acceptable time, both data and calculation are distributed over a cluster envi-
ronment. This becomes even more crucial with focus on high performance in par-
ticular. To simplify low latency data accesses distributed file systems are applied
in such environments nowadays. Therefore, Ceph [17], which is a wide-spread
solution for clustered environments, builds the foundation of the nativeNDP
framework. Its purpose is to efficiently manage a variety of nodes within a clus-
ter environment. Thereby, stored files are striped across small objects, grouped
into placement groups and distributed on these nodes to ensure scalability and
high reliability. Its flexible architecture comprises various components and pro-
vides interfaces for object, block and file I/O. Internally, exchangeable storage
engines are responsible to manage the read and writes to secondary storage. One
of its most recent storage backends is called BlueStore and utilises RocksDB as
an internal KV-Store.

Storage Manager: We replaced the internal KV-Store of BlueStore with our
own native storage engine NoFTL-KV [16]. Hereby, hardware characteristics,
like in-parallel accessible flash chips of the storage device, are known by NoFTL-
KV, which in turn is able to efficiently leverage those. Consequently, the physical
location of persisted data is defined by the KV-Store itself rather than any Flash-
Translation-Layer (FTL) of a conventional stack. This opens the opportunity to
issue commands directly on the physical locations throughout NoFTL-KV and
to streamline low-level interfaces along the entire access path.

NDP Device: Devices are emulated by our own storage-type SCM Simula-
tor, based on [10]. Running as a kernel module it provides the ability to delay
read and write request depending on its emulated physical locations by utilising
the accurate kernel timer functions. As a consequence, reads or writes across
physical page borders claim respectively multiple I/O latencies. In the experi-
mental evaluation the simulator is instrumented with realistic storage-type SCM
latencies from [1]. Moreover, by its flexible design it allows us to extend it with
the necessary NDP interface.
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3.2 Inferfaces and Abstractions

The first, most commonly applied interface is the traditional file I/O (Figure
2.1). It abstracts the cluster as a large file system, storing its data distributed on
multiple nodes. A partitioning and/or replication layer takes care of the internal
data placement on various nodes. Instead of the KV-Store the conventional Block
I/O is used to issue reads and writes to the NDP Device. This also involves any
kind of Flash-Translation-Layer on the device itself to reduce the wear on a
single storage cell and consequently ensure longevity of the entire device.

Secondly, a modern object interface offered by RADOS [18] (Figure 2.2) can
be utilized to put/get objects on the cluster. This abstraction might comprise
single or multiple records of a file, or the result set of a pushed down user
defined function executed on the respective node. Since the cluster handles data
placement, it can transparently execute such algorithms in parallel with the full
processing power of the node’s servers if the operations are data independent.
Within the lower levels, depending on the storage manager, one can either exploit
the conventional Block I/O to access the NDP Device or leverage NoFTL-KV’s
Native Storage Interface.

Thirdly, an NDP pushdown necessitates a different kind of interface defini-
tion (Figure 2.3). The NDP execution of application-specific operations requires
open interfaces. These should support NDP of application-specific abstractions
such as DataFrame for R. Consequently, these interfaces and abstractions man-
date flexibility, since various result types of the application logic on the device
must be transferred back to the client. Expensive format conversion along the
system stack can be avoided almost entirely. Yet, an extensive toolchain and
NDP framework support is required, beginning from the analytical tool to the
employed hardware devices in the cluster. Utilising the processing elements near-
storage (e.g. FPGA), the internal, on-device parallelism and bandwidth. For in-
stance, [13] projects of up to 50 GB/s, while the workload on slower buses (e.g.
PCIe 2.0 ≈ 6.4 GB/s) in the system is eased by reducing transfer volumes (i.e.
resultset � rawdata).

4 Experimental Evaluation

To compare the different execution options on the presented system stack and
evaluate their bottlenecks, we conduct three experiments aligned to the scenarios
of Figure 1.

4.1 Datasets and Operations

To ensure the comparability of the scenarios, datasets and operations are prede-
fined. The datasets are created synthetically as CSV files with random numbers,
with varying rows and columns from 1k to 10k. When stored in the KV-Store,
each cell of the CSV File is identifiable by an auto-generated key with the struc-
ture:
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[object name].[column index].[row index]

Inevitably, this is bloating out the raw file size by approximately 16x-17x but en-
ables to access cells by this unique id. Alternatively, depending on the workload,
an arrangement pre row or per column is likewise feasible. Table 1 summarizes
the properties of each dataset for the present experiments.

Dataset KV Pairs CSV Size KV Size Bloating
Ratio[MB] [MB]

1k/1k 1 000 000 2.8 44 15.9

2k/2k 4 000 000 12 182 15.2

4k/4k 16 000 000 45 738 16.4

6k/6k 36 000 000 101 1 668 16.5

8k/8k 64 000 000 178 2 971 16.7

10k/10k 100 000 000 278 4 649 16.7

Table 1: Synthetically generated datasets for the experiments.
The raw CSV file size is according the Key-Value format bloated
out.

The operations performed in all experiments is independent of the data dis-
tribution and constitutes a typical data science application - calculation of the
sum or the average over a given column (Because of the marginal differences
only sum is shown further on). The final result set comprises a 32 byte integer
value and some additional status data. We leave the implementation of further
analytical and/or statistical operations open for future work.

4.2 Experimental Setup

The server, nativeNDP is evaluated on, is equipped with four Intel Xeon x7560
8-core CPUs clocked at 2.26 GHz, 1TB DRAM running Debian 4.9, kernel 4.9.0.
The NDP storage device is emulated by our real-time NVM Simulator, extended
with an NDP interface and functionality. I/O and pushdown operations are
handled internally with the storage-type SCM latencies [1].

Since the main target is to evaluate the streamlining of NDP interfaces and
abstractions, interferences caused by data distribution or multi-node communi-
cation have to be avoided. Therefore, the Ceph cluster is set up with a single
object store node. This allows conducting experiments along a clean stack and
measuring execution and transfer size for each architectural layer individually.
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Fig. 3: Execution time for varying dataset sizes shows the performance impact
of data transfers/volume, and the improvement through NDP.

4.3 Experiment 1 – Baseline

The first experiment utilises the Ceph cluster in the most common and con-
ventional way - as a file system (Figure 2.1). Therefore, the file abstractions,
interfaces, and subsequently Block I/O are used to retrieve the entire file. The
sum over the 10th column is calculated in R by calling readCSVDataFrame of
RCeph and caching the resulting DataFrame into the R runtime environment.
Here, R’s capabilities can be used to filter the DataFrame on the respective
column and perform the arithmetic operation.

sum <- sum(RCeph::readCSVDataFrame(o_name)[col_id])

This experiment defines the baseline for any improvements of nativeNDP.
However, it exemplifies multiple drawbacks yielding in a significant performance
degradation. Firstly, the entire file has to be read via block I/O, even though
only a small portion of it, the 10th column, is necessary to be processed by
the operation (Figure 5). Secondly, the latency and bandwidth limitations of
the network interconnect between the R host and the Ceph cluster, contribute
to additional delays to the R processing. The significantly higher transfer size
of Host-To-Client, illustrated in Figure 5, leads inevitably to a slower request
duration. Additionally, as R DataFrames do not support any streaming algorith-
mic, the processing has to idle until the entire dataset is retrieved from Ceph.
Thirdly, additional compute-intensive format conversions along multiple inter-
face boundaries are necessary to create R DataFrames, which increase delays
even further. E.g. the ”R - parse time” is 95% of the total time as shown in Fig-
ure 4. Moreover, such format conversion are directly depending on the data size,
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which is subsequently affected by the large Host-To-Client transfer size. Lastly,
client systems often comprise limited hardware (e.g. notebook or workstation),
while typical working sets can range from tens to hundreds of gigabytes. Thus,
processing the whole dataset is not always possible without any performance
degrading swapping to disk.

These drawbacks lead to a significantly higher total execution time for the
calculation in general, as shown in Figure 3 (at least 10x).

In total, the baseline experiment results in the lowest performance for all
datasets, which is mainly caused by the time spent in transfer and conversion
of the CSV object into the R specific data type DataFrame (”R - parse time”
Figure 4).
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4.4 Experiment 2 – Pushdown Cluster

For the second experiment, Ceph’s advanced object interface is extended to ex-
ecute a user defined function. It queries the KV-Pairs of the respective dataset
from NoFTL-KV of the Storage Manager by filtering on the 10th column. Thereby,
the retrieved values are cumulated (Figure 2.2). In a full-fledged cluster sce-
nario, Ceph will automatically distribute this algorithm on the respective nodes
within the cluster and aggregate their results afterwards. Obviously, the result
size after the operation pushdown is dramatically smaller than the raw data,
which relieves the network and accelerates subsequent expensive data format
conversions. Hence, the almost non-existing ”R - parse time” (Figure 4) and the
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respective transfer size from Host-To-Client (Figure 5). Both result in an overall
performance improvement of up to 30% in comparison to the baseline (Figure
3).

sum <- RCeph::execCmd(o_name, "NDP_CEPH SELECT SUM COLUMN col_id")

Nonetheless, the I/O overhead of reading the entire data from the storage
subsystem, as shown in Figure 5 by Device-To-Host, represents a major bottle-
neck. Therefore, the time spent in format conversions within Ceph increases as
well. For the largest dataset it takes more than 99% of the time. However, it can
be avoided by applying NDP.
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Fig. 5: Transfer sizes from Device-To-Host and Host-To-Client of varying datasets
shows the counteraction of NDP to the von Neumann bottleneck

4.5 Experiment 3 – Pushdown NDP Device

Our last experiment relies on Near-Data Processing (Figure 2.3). Abstractions
and interfaces are statically created for the purpose of filtering on a given column
and computing sums to enable a device pushdown.

sum <- RCeph::execCmd(obj_name,"NDP_DEV SELECT SUM COLUMN col_id")

The NDP pushdown leverages the much higher levels of compute and I/O
parallelism supported by the on-device processing elements (FPGA, GPU) to
compute the sum an order of magnitude faster (Figure 3). Thereby, transfer-
ring data from the storage chips takes most of the time (Figure 4 ”Device -
load time”), while the processing is only about 3% of the total time (Figure 4
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”Device - process time”). Not only is the network relieved by this early reduc-
tion of volume, but also the system-wide number of data transfers is significantly
reduced. This is mainly driven by the on-device computation and result size re-
duction as shown in Figure 5. As this is only possible with the application-specific
abstractions, a push down command must compulsorily comprise those to apply
computation on the device, in-situ. In R, for instance, DataFrame may be a
suitable application-specific abstraction.

5 Conclusion

We present nativeNDP, a NDP approach to effectively pushdown analytical oper-
ations to a native storage node of a clustered environment. The evaluation shows
improvements of at least 10x over the baseline. Besides the known issues with
todays computer architectures, we identify ill-suited interfaces and abstractions
along the analytical stack as major drawbacks of current solutions. Moreover,
the necessity to push down application-specific abstractions, and data layouts
interpretable by the NDP device is considered a key aspect for a true in-situ
processing in complex system stacks. To mitigate format conversions along in-
terface boundaries of such stacks, a comprehensive but flexible NDP toolchain
is required.
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