
IPA-IDX: In-Place Appends for B-Tree Indices
Sergey Hardock, Andreas Koch
[firstname].[surname]@tu-darmstadt.de

Technische Universität Darmstadt, Germany

Tobias Vinçon, Ilia Petrov
[firstname].[surname]@reutlingen-university.de

Reutlingen University, Germany

ACM Reference Format:
Sergey Hardock, Andreas Koch and Tobias Vinçon, Ilia Petrov. 2019.
IPA-IDX: In-Place Appends for B-Tree Indices. In Proceedings of
ACM Conference (Conference’17).ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Indexes are some of the hottest and most write-intensive
database objects. Modification and maintenance operations
in a B-Tree may spread several nodes yielding high write-
amplification and degrading I/O performance on modern
storage technologies. Techniques such as In-Place Appends
(IPA) [5] are designed to handle such small random writes
graciously. Upon an in-place update to a DB-page, IPA [5]
tracks the changed bytes between the original and updated
record, computes their offsets producing value/offset pairs
and appends these as delta-records to that page. However,
IPA’s offset-value delta-record format is unsuitable for B-Tree
indices. Assume a unique B-Tree index Idx1 on a numeric
field Attr1 of database table Tbl1 (Figure 1). Transaction Tx1
modifies a single record of Tbl1 on page 123, changing the
value of Attr1 from 10 to 100, modifying 4 bytes. (1) The index
entry with key 10 is deleted from leaf page 456. Hence, either
the deleted vector is updated, or the slots are right-shifted
by one. (2) A new index entry with key 100 is inserted into leaf
page 789. The insertion requires modification of both, the slot
directory and the page body. Thus, a one-field modification
of a single record in Tbl1 causes three database pages to be
updated (123, 456 and 789). IPA can only handle the small
4 byte update to page 123. Whereas, the updates to pages
456 and 789 result in numerous multi-byte changes, yielding
many offset-value pairs in excess of 500 bytes, making it
impractical for IPA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

In this paper we propose IPA-IDX for B-Tree indexes. In-
stead of storing modified bytes as offset-value pairs in an IPA
[5] delta-record, IPA-IDX relies on physiological log records
(Figure 2). Usage of log records allows IPA-IDX to reduce the
space requirements for delta-record area by a factor of 2 and
more, compared to IPA. Under TPC-B IPA-IDX and IPA com-
bined improve performance by 28%, increase Flash longevity
by 66%. Under TPC-C IPA-IDX improves performance by 9%
and longevity by 44%. IPA-IDX works on all types of Flash.

Transaction Tx1
IF
(
SELECT Attr1
FROM Tbl1
WHERE Id=777
) = 10
THEN
UPDATE Tbl1
SET Attr1 = 100
WHERE Id=777

Tbl1 Attr1ID

777 10

Pa
ge

12

3

Idx1

Pa
ge

45

6

Pa
ge

78

9

Ins-logDel-log

Idx1

Pa
ge

45

6

Pa
ge

78

9 Insdel

D
at

ab
as

e
Ph

yi
sc

al

St
or

ag
e

Phys. Page
M

Phys. Page
Q Ins-log

Phys. Page
A 100 Phys. Page K Phys. Page W

Phys. Page M Phys. Page Q

IPA-IDX IPA Traditional Index Update

Del-log

Figure 1: IDX-IPA and traditional index updates.

2 IPA-IDX
The basic idea of IPA-IDX is straightforward. Whenever a
transaction triggers an index modification, IPA-IDX tracks
the changes to the corresponding index pages in the buffer.
IPA-IDX appends a copy of the respective physiological log
records to those pages if: (i) the page can be overwritten in-
place, i.e., number of already performed in-place overwrites
is less than N); (ii) corresponding log record for this change
fits into the remaining space in the delta-record area. This
repeats for the changes pending on those page. Subsequently,
the buffer manager sets an IPA flag on those pages. If they
get evicted the storage manger uses a special write_delta
command [5], physically appends the delta-records in-place
on flash. Conversely, if one of the above conditions is not sat-
isfied the page is flagged to be written out-of-place to a clean
Flash address, and no further IPA-IDX tracking is performed
until the page is flushed. In both cases modifications to index
page body are performed as usual. Note that IPA-IDX has
no implications on recovery as regular WAL and recovery
protocols are in place. IPA-IDX neither triggers additional
I/Os, nor does it influence the eviction strategy.

Whenever an index page is fetched, the storage manager
checks if the page contains delta records. If so, it performs
logical operations of the log records stored in those delta
records. Applying delta records in IPA-IDX is similar to exe-
cuting the REDO phase of recovery for a particular page.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Hardock et al.

 Free Space
Page Footer

 Page Header ●●●...

O
O

B Flash data ECCinitial ECCdelta_rec 1 ECCdelta_rec N...

N
SM

-F
or

m
at

te
d

In
de

x
Pa

ge IndexRecord 1 IndexRecord 3
 IndexRecord 2

Delta-Record Area ([NxM] scheme: N delta-records / M bytes each)
Delta Record 1

Delta Record N

Phys_log_recLSN=128 ...Phys_log_recLSN=217 Phys_log_recLSN=297

M-Bytes

Figure 2: Page and delta record layout in IPA-IDX.

3 RELATEDWORK
IPA-IDX builds on the concept of unsorted B+-Tree (leaf)
nodes, which has already been explored in numerous works
[2, 3, 9–11]. [10] proposes controlled sort imbalance based
on the read-to-write ratio. The concept of transforming in-
place index updates into physiological log records has been
pioneered by IPL for B+-Trees[8] and refined by d-IPL B+-
Tree[7]. [6–8] append the log records to an extra log-page
within the respective Flash block. These approaches are de-
signed for SLC Flash, while IPA-IDX can handle MLC and
3D NAND. IPL [6], d-IPL B+-Tree[7] also show significant
read-amplification compared to IPA-IDX as the log-page(s)
must be read for each index node/page. IPA-IDX places the
delta records on the very same node, using ISPP-based write
techniques, keeping the write- and read-amplification low.

4 EVALUATION
IPA-IDX is implemented in NoFTL under Shore-MT and
evaluated on real hardware (OpenSSD JASMINE [1]). IPA-
IDX can be applied selectively, i.e only to specific regions
[4], and within those regions only to selected DB-objects.

Figure 3 presents the performance results of IPA-IDX un-
der TPC-C, where IPA-IDX is enabled for five B-Tree in-
dexes: NO_IDX(no_w_id, no_d_id, no_o_id), O_IDX(o_w_id,
o_d_id, o_id), O_CUST_IDX(o_w_id, o_d_id, o_c_id, o_id),
OL_IDX(ol_w_id, ol_d_id, ol_o_id, ol_number). As these are
only appended to, we add an additional S_QUANTITY_IDX
(s_w_id, s_i_id, s_quantity) index to have a of B-Tree with
insertions and deletions. All these indexes together occupy
about 30% of database space.

We apply a [2x270] scheme (Figure 2), that allows perform-
ing 40% of all database writes using IPA-IDX, while for five
indexes the fraction of delta_writes is about 65%. IPA-IDX
improves the transactional throughput by 9%. Noticeably
larger is the benefit for the GC overhead. The avg. amount
of page migrations per one 4KB host write was reduced by
40%, while the number of erases by 44%.

In a second experiment we investigate the combined ef-
fects of basic IPA and IPA-IDX (Figure 4). Firstly, we apply

tpcc_2

Page 1

IPA-IDX [2x270]

Host Reads (4KB) 56 284 772 64 457 410 +15
Host Writes (4KB) 56 977 326 62 821 498 +10
GC Page Migrations 18 117 128 12 000 279 -34
GC Erases 1 173 341 718 641 -39

0.318 0.191 -40

0.021 0.011 -44

READ 0.37 0.30 -19
WRITE 0.44 0.38 -14

Trx. Throughput 557 610 +9
Space overhead +4.0

Flash storage = 50GB
TPC-C, SF = 150, 2 hours

Baseline
No IPA

Relative [%]

Out-of-Place Writes vs.
In-Place Appends 60/40

GC Page Migrations
per Host Write
GC Erases
Per Host Write

I/O
Response Time

[ms]

Figure 3: Evaluation of IPA-IDX under TPC-C.tpcb

Page 1

IPA [2x16]

Host Reads (4KB) 41 901 849 47 943 305 +14 55 618 681 +33
Host Writes (4KB) 43 523 639 49 535 369 +14 57 262 170 +32
GC Page Migrations 23 767 131 17 139 595 -28 10 422 430 -56
GC Erases 1 030 365 726 637 -29 460 509 -55

0.546 0.346 -37 0.182 -67

0.024 0.015 -38 0.008 -66

READ 0.52 0.42 -19 0.32 -39
WRITE 0.52 0.43 -16 0.37 -29

Trx. Throughput 3668 4119 +12 4677 +28
Space overhead +0.6 +2.1

Flash storage = 50GB
TPC-B, SF = 2000, 2 hours

Baseline
No IPA

Relative
[%]

IPA [2x16]
IPA-IDX [2x270]

Relative
[%]

Out-of-Place Writes vs.
In-Place Appends 62/38 36/64

GC Page Migrations
per Host Write
GC Erases
Per Host Write

I/O
Response Time

[ms]

Figure 4: Evaluation of IPA-IDX under TPC-B.

basic IPA with [NxM]=[2x16] (Figure 2) scheme to the Ac-
count table in TPC-B. The transactional throughput improves
by 12%, and garbage collection overhead decreases by 37%. In
this experiment there is an additional index H_IDX(h_a_id,
h_date) on the History table. Since every transaction inserts
a new entry in the History table, this index becomes write-
intensive, and accounts for approx. 45% of the databasewrites
(another 54% of write I/Os falls on the Account table).

Secondly, on top of basic IPA, we enable IPA-IDX for the
H_IDX index using [NxM]=[2x270] (Figure 2). The total frac-
tion of IPAwrite I/Os (delta_writes) increases to 64%. The GC
overhead decreases by a further 30% (66%-68% in total com-
pared to baseline without IPA). The tx. throughput improves
by 12% with basic IPA, and by 28% with IPA and IPA-IDX.
The space overhead of IPA and IPA-IDX is 2%.

5 CONCLUSION
We introduce IPA-IDX – an approach to handle index modi-
fications modern storage technologies (NVM, Flash) as phys-
ical in-place appends, using simplified physiological log
records. IPA-IDX provides similar performance and longevity
advantages for indexes as basic IPA [5] does for tables. The
selective application of IPA-IDX and basic IPA to certain re-
gions [4] and objects, lowers the GC overhead by over 60%,
while keeping the total space overhead to 2%. The combined
effect of IPA and IPA-IDX increases performance by 28%.

IPA-IDX: In-Place Appends for B-Tree Indices Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] 2019. OpenSSD - JASMINE Plattform. http://www.openssd-project.

org/wiki/Jasmine_OpenSSD_Platform.
[2] Shimin Chen and Qin Jin. 2015. Persistent B+-trees in Non-volatile

Main Memory. Proc. VLDB Endow. 8, 7 (Feb. 2015), 786–797.
[3] Ping Chi, Wang-Chien Lee, and Yuan Xie. 2014. Making B+-tree

Efficient in PCM-based Main Memory. In Proc. ISLPED ’14.
[4] S. Hardock, I. Petrov, R. Gottstein, and A. P. Buchmann. 2016. Revisiting

DBMS Space Management for Native Flash. In Proc. EDBT’16.
[5] S. Hardock, I. Petrov, R. Gottstein, and A. P. Buchmann. 2017. From

In-Place Updates to In-Place Appends: Revisiting Out-of-Place Updates
on Flash. In Proc. SIGMOD’17.

[6] Sang-Won Lee and Bongki Moon. [n. d.]. Design of Flash-based DBMS:
An In-page Logging Approach. In Proc. SIGMOD’07.

[7] G. Na, S. Lee, and B. Moon. 2012. Dynamic In-Page Logging for B+tree
Index. IEEE TKDE 24, 7 (July 2012), 1231–1243.

[8] G. Na, B. Moon, and S.-W. Lee. 2009. In-Page Logging B-Tree for Flash
Memory. In Proc. DASFAA.

[9] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, andW. Lehner. 2016. FPTree:
A Hybrid SCM-DRAM Persistent and Concurrent B-Tree for Storage
Class Memory. In Proc. SIGMOD’16.

[10] Stratis D. Viglas. 2012. Adapting the B + -tree for Asymmetric I/O. In
Proc. ADBIS.

[11] Jingren Zhou and Kenneth A Ross. 2002. Implementing database
operations using SIMD instructions. In Proc. SIGMOD ’02.

http://www.openssd-project.org/wiki/Jasmine_OpenSSD_Platform
http://www.openssd-project.org/wiki/Jasmine_OpenSSD_Platform

	1 Introduction
	2 IPA-IDX
	3 Related Work
	4 Evaluation
	5 Conclusion
	References

