
MV-PBT: Multi-Version Indexing for Large Datasets and HTAP
Workloads

Christian Riegger

Data Management Lab,

Reutlingen University, Germany

christian.riegger@reutlingen-university.de

Tobias Vinçon

Data Management Lab,

Reutlingen University, Germany

tobias.vincon@reutlingen-university.de

Robert Gottstein

Data Management Lab,

Reutlingen University, Germany

robert.gottstein@reutlingen-university.de

Ilia Petrov

Data Management Lab,

Reutlingen University, Germany

ilia.petrov@reutlingen-university.de

ABSTRACT
Modernmixed (HTAP)workloads execute fast update-transactions

and long-running analytical queries on the same dataset and sys-

tem. In multi-version (MVCC) systems, such workloads result in

many short-lived versions and long version-chains as well as in

increased and frequent maintenance overhead.

Consequently, the index pressure increases significantly. Firstly,
the frequent modifications cause frequent creation of new ver-

sions, yielding a surge in index maintenance overhead. Secondly

and more importantly, index-scans incur extra I/O overhead to

determine, which of the resulting tuple-versions are visible to

the executing transaction (visibility-check) as current designs

only store version/timestamp information in the base table – not

in the index. Such index-only visibility-check is critical for HTAP

workloads on large datasets.

In this paper we propose the Multi-Version Partitioned B-Tree
(MV-PBT) as a version-aware index structure, supporting index-
only visibility checks and flash-friendly I/O patterns. The ex-

perimental evaluation indicates a 2x improvement for analytical

queries and 15% higher transactional throughput under HTAP

workloads. MV-PBT offers 40% higher tx. throughput compared

to WiredTiger’s LSM-Tree implementation under YCSB.

1 INTRODUCTION
The spread of large-scale, data-intensive, real-time analytical

applications is increasing. Such applications result in Hybrid

Transactional and Analytical Processing workloads (HTAP) com-

bining long running analytical queries (OLAP) as well as frequent

and low-latency update transactions (OLTP) on the same dataset

and even on the same system [19].

Multi-versioning is at the core of many approaches and sys-

tem designs suitable for HTAP. Under Multi-Version Concurrency
Control (MVCC) reading transactions, executing long-running

queries, do not block the frequent low-latency modifying transac-

tions. Under such approaches multiple versions of each data item

(i.e. tuple) may physically co-exist, whereas every transaction op-

erates against a snapshot of the database comprising all versions

it is allowed to see for consistent execution. Read operations

simply operate on the latest committed version, visible to them

and are therefore never blocked, yielding good read performance

and concurrency. An update operation produces a new version

of the updated data item and invalidates the predecessor version.

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the

23rd International Conference on Extending Database Technology (EDBT), March

30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

Reading
Transaction

TXR executes a long-running query QR

Transactions
modifying
tuple t, attr. a

TXU1

Version-
chain of
tuple t

t.v0 7

re
ad

(t)

t.v1 3

update (t)
set a=3

 TXU2

re
ad

(t)

t.v2 1

update (t)
set a=1

 TXU3

re
ad

(t)

t.v3 9

update (t)
set a=9 MV-PBT

931 7

Lookup
(a<= 10)

M
od

ifi
ca

tio
ns t.v0

Figure 1: HTAP and Version-Chain Lengths:TXU 1 . . .TXU 3

create new versions of tuple t, which are indexed. The in-
dex scan ofTXR returns only the index entries (t .v0) visible
to TXR filtering the invisible ones (t .v1 . . .t .v3), matching
the search predicate.

All versions of a tuple form a version-chain. Timestamps placed

on every physical version-record are used to determine, which

of the exisiting tuple-versions is visible to a transaction.

Under OLTPworkloads, version-chains tend to be short, due to

the predominantly short-lived transactions. For instance, under

TPC-C the average version-chain length is approx. 1.2 [9]. Under
HTAP the DBMS needs to handle much longer version-chains due
to the mix of long-running and short-lived transactions (Figure 1).
Whenever a transactionTXR reads a tuple t the DBMS returns the

latest version of that tuple t .v0, committed before the start ofTXR .

Even though, in the meantime multiple low-latency updating

transactions TXU 1 . . .TXU 3 might have committed, producing

successor-versions (t .v1 . . .t .v3), t .v0 cannot be garbage collected
as long as, it is visible to an active transaction, i.e. TXR . Thus,

the amount of such transient versions can be as high as several
hundred millions in real systems [14].

HTAP workloads in combination with long version-chains exer-
cise significant pressure on indices. In a single-versioned system

there is one index entry per tuple. However, in a multi-versioned

system, the DBMS needs to index at least all committed tuple-

versions (Figure 1), even the transient ones. Thus, long version-

chains put extra pressure on the index. Although most of today’s
systems are multi-versioned, the majority of index approaches still
handle tuple-versions of the same tuple as if they were separate
tuples, ignoring the version semantics. If naïvely integrated, these

slow down index lookups and may cause significant maintenance

overhead to persistent indices, as index updates are very frequent

and since index entries corresponding to obsolete tuple-versions

need to be frequently garbage collected. Given the read/write

asymmetry of modern persistent storage technologies these op-

erations result in prohibitively expensive in-place updates. In

this context append-based index structures trading sequential

writes for complex reads are a good candidate.

All in all, the following observations can be made:

1) Version-obliviousness: Although, all tuple-versions need to be

indexed, current indexing approaches lack version information.

2) Lack of index-only visibility-checks: It is currently impossible

to determine, which of the index-entries resulting from an index

lookup/scan correspond to versions, visible to the calling trans-

action solely based on the index.

3) I/O overhead: Version-oblivious indices or naïve support for
multi-versioning yield significant I/O overhead.

In the present paperwe propose theMulti-Version Partitioned B-
Tree (MV-PBT) as a version-aware index structure for MV-DBMS,

in an attempt to address the above issues. MV-PBT is based on a

variant of B
+
-Trees called Partitioned B-Trees [13]. The contribu-

tions of this paper are:

• MV-PBT is a version-aware index structure. It contains version

information and supports index-only visibility-checks.

• MV-PBT supports append-based write-behavior and exhibits

much lower write-amplification compared to LSM-Trees.

• MV-PBT has been implemented in PostgreSQL. The perfor-

mance evaluation under HTAP workloads (CH-Benchmark

[2]) indicates 2x analytical throughput improvement due to

index-only visibility-checks, while improving the transactional

throughput by 15% compared to PostgreSQL’s highly-optimized

B
+
-Tree. Under TPC-C MV-PBT performs 15% better.

• MV-PBT has also been implemented in WiredTiger (Mon-

goDB). The performance evaluation indicates approx. 40%

higher throughput under YSCB compared to WiredTiger’s

highly-optimized LSM-Trees.

The rest of the paper is organized as follows. We motivate the

missing version-awareness and the need for index-only visibility-
checks in Section 2, while Section 3 provides some background

on various multi-versioning aspects. The design and implemen-

tation of MV-PBT is described in detail in Section 4, while the

experimental evaluation is presented in Section 5. We. discuss

related approaches in Section 6 and conclude in Section 7.

2 MOTIVATION
In this section we give a more comprehensive perspective on

the above issues of: 1) Version-obliviousness in indices; 2) missing
index-only visibility-check; and 3) I/O overhead. Consider the ex-
ample in Figure 2, which is a more detailed version of Figure 1

with a conventional B
+
-Tree. An initial transaction TXU 0 (not

depicted) inserts tuple t prior to TXR , creating its initial version

t .v0. While TXR is running, multiple concurrent transactions

TXU 1 . . .TXU 3 update tuple t and each of them produces new

versions of it (t .v1. . .t .v3). Only TXU 3 inserts tuple y in its ini-

tial version y.v0 in addition to creating t .v3. Each tuple-version

is a separate physical version record (Figure 2.A). It contains

version-information: the recordID of the predecessor version and

two timestamps, tcreation - the timestamp of the transaction that

created that tuple-version; and tinvladiation the timestamp of

the transaction that invalidated it by creating a successor version.

The invalidation-timestamp is null if there is no successor. If a

tuple gets deleted a special tombstone version-record is inserted

to mark the logical end of the chain. The version-information is
only available on the version-record.

Since version-records are independent physical entities they

can be stored on any DB-page with enough free space. Figure

2.B depicts an example of the physical version-storage. For con-
sistency, an index on a table must contain index-entries for each
committed version of every tuple. Therefore, a B+-Tree index idx
on attribute a of table R (Figure 2.C) should reflect all versions of

each tuple of R. Since the index is version-oblivious it contains no
version-information, and treats each tuple-version as if it were a
separate tuple. Consequently, ifTXR uses the index to count all tu-

ples satisfying “a ≤10” (Figure 2.D), the index scan will return the

matching index entries (referencing versions t .v0 . . .t .v3). Now,
each one of them must be checked for visibility, i.e. is it latest

committed tuple-version prior to the start of TXR . However, the

necessary timestamps are available only on the version-records.

Therefore, all of them are retrieved, at the cost of random I/Os.

Return all tuple
versions satisfying:

Table R a z tcrea
tion

tinvali
dation

Tuple t version t.v0 7 TXu0 TXu1
version t.v1 3 TXu1 TXu2
version t.v2 1 TXu2 TXu3
version t.v3 9 TXu3 null

Tuple y version y.v0 11 TXu3 null

Logical ViewA

B+-Tree
idx

931 7

IndexC

11 *****

Physical StorageB
t.v0

Page 3
t.v3

Page 42
y.v0

Page 5
t.v2

Page 72
t.v1

Page 117

D

 :
SELECT COUNT(*)
FROM R WHERE a <= 10;
 :

Transaction TXR

COSTS: Index Scan +
 4 Table Pages/
 Random I/Os
RESULT: 1 Version

Visibility
CheckE

Execution of long-running
transaction TXR

CREATE INDEX
idx ON R(a);

...

MAX(tcreation) <= TXR
& COMMITTED

recID(t.v3)
recID(t.v2)

recID(t.v1)recID(t.v0)

recID(t.v0)

Figure 2: Index-Only Visibility-Check in Multi-Version
DBMS: (a) logical tuples (t and y) of a table R and their ver-
sions; (b) the physical storage of these versions into data-
base pages; (c) an index created over table Rmust index all
versions; (d) an index-scan retrieves all versions matching
the predicate, out of which (e) the visibility-check returns
only the ones visible to calling transaction TXR .

In our example (Figure 2.D, C and E), the index-scan for the

condition “a ≤10” will return versions t .v3, t .v0, t .v1 and t .v2.
Subsequently, they are read to extract the version-information
(tcreation and tinvalidation – Figure 2.A) yielding four random

I/Os. The visibility-check then determines the latest version com-

mitted prior to the start ofTXR , returning the recordID of t .v0 and
ignoring the rest. Since the index is version-oblivious and thus does
not support index-only visibility-checks, the I/O costs amount to:
COST(Index-Scan) + 1 random I/O for each matching tuple-version.
Especially for HTAP workloads this yields significant performance
degradation depending on the length of the version-chains.

To quantify the combined effect, we designed a simple experi-

ment with YCSB [7] and PostgreSQL. We run YCSB workloads A

(update) and E (scan) combined, performing frequent scans and

updates. In parallel, we perform a point-query on a tuple every 30

seconds (simulating an HTAP workload). Additionally, we con-

tinuously increase the version-chain, by updating the tuple, until

50 versions are reached. In realistic HTAP settings, the amount of

active versions can be as high as several hundred millions, while
analyses can take as long as 1000s [14]. The experimental results

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Th
ro

ug
hp

ut
 (T

x
pe

r s
ec

on
d)

Version-Chain Length

BTree PBT MVPBT

Performance effect of
index-only visibility-checks under HTAP workloads

Performance effect of
append-based indices and storage

Figure 3: Performance Impact of Version Visibility Check.

are shown in Figure 3. The highly-optimized B
+
-Tree implemen-

tation in PostgreSQL performs better than MV-PBT on a single

tuple-version. However, as the version-chain length increases

(6-8 versions) the performance drops rapidly to approx. 50 trans-
actions/sec, due to version-obliviousness and random I/O. Basic

Partitioned B-Trees (PBT), are likewise version-oblivious, but ex-
hibit append-based write behaviour, avoiding in-place updates

and perform therefore slightly better (approx. 150 tx/sec). Due to
its version-awareness and support for index-only visibility-check
MV-PBT exhibits much higher and robust performance (approx.
1200 tx/sec) with growing chain lengths. MV-PBT shows a per-

formance increase with chain-lengths of two or more due to the

partition buffer since: (a) the initial YCSB data load, producing the

first version fills partition P0 and evicts it; while (b) the second

version is created by the benchmark workload and is in PN .

3 BACKGROUND
Multi-Version Concurrency Control (MVCC) is one of the most

popular transaction management schemes and is used in most

modern DBMS: Oracle, Microsoft SQL Server, HyPer, SAP HANA,

MongoDB WiredTiger, NuoDB, PostgreSQL or MySQL-InnoDB,

just to name a few. These DBMS make different design decisions

regarding various MVCC aspects described below.

3.1 Version Storage
Under MVCC a logical tuple corresponds to one or more tuple-

versions (Figure 2.A). They form a singly linked list, which rep-

resents a version chain. There are two possible physical repre-

sentations of a tuple-version (Figure 4): physically materialized
or delta-record based. The former implies that each tuple-version

record is stored physically materialized in its entirety and is in

the focus of this paper. The latter implies that each modification

of a logical tuple results in a delta-record, indicating the differ-

ence to another version (à la BW-Tree [15, 22]). The delta-records

are connected and retrieved on demand by the DBMS storage

manager to restore a tuple-version. Delta-record based system

designs typically store a single version (oldest or newest) in the

main store and use a separate store for the delta-records, which

may be the undo log (à la InnoDB) or a temporary version store (à

la MS SQL Server). Both organizations can perform modifications

in-place or out-of-place. Out-of-place updates with physically
materialized version-maintenance insert a new version-record

in the base table. Based on the version ordering, additional mod-

ifications may be necessary to maintain logical timestamps or

references.

Tuple t
version t.v3

t.v3 7 TXu3 -V3

Tuple t
version t.v2

t.v2 7 TXu2 TXu3V2

y.vn

...

Physically Materialized Storage Delta-Record Storage
latest versiont.v3 7 TXu3 -V3

Delta storage

t.v2 TXu2V2

UNDO log

LogLSN TXU2

Version Pool/Temp Storage

t.v2 ... TXu2 TXu3

t.v0

...

...

Figure 4: Version Storage Alternatives

Considering the characteristics of modern storage technolo-

gies, physically materialized version storage and out-of-place

updates are preferable, due to lower write-amplification and the

higher parallelism. Delta records tend to consume less space than

materialized tuple-versions, but require additional processing

and all predecessors or successors for tuple reconstruction.

3.2 Version Ordering
The set of tuple-versions of a database tuple is organized as

a singly linked list. There are two different ordering methods

(Figure 5): old-to-new and new-to-old.
Old-to-New ordering: The entry-point is the oldest tuple-version

in version chain and each version contains a reference (recordID)

to its successor. A visibility-check must therefore process all suc-

cessors, beginning from the oldest tuple-version. This behavior is

beneficial for lookups of long-running analytical (OLAP) queries

under HTAP workloads, where older tuple-versions are likely to

be the visible ones. Alternatively, OLTPworkloads mostly require

the newest version and would need to process the whole version

chain. New-to-Old ordering implies that the entry-point is the

newest tuple-version, which refers to its predecessor. Queries in

the typically short OLTP transactions find the visible version very

fast, but long-running OLAP queries may need to process several

successors in version chain (Figure 3). In-place and out-of-place
update strategies are are possible for both methods.

Considering the characteristics of modern storage technolo-

gies new-to-old ordering for physical version storage results in

lower write-amplification and matches append-only storage. All

other approaches require in-place updates.

Newer
version t.v3 ... TXu3 -

Older
Version t.v2 ... TXu2 TXu3

New-to-Old Ordering Old-to-New Ordering

New-to-old Reference

Newer
versiont.v3 ... TXu3 -

Older
Versiont.v2 ... TXu2 TXu3

Old-to-New Reference

Figure 5: Version Ordering Alternatives

3.3 Version Invalidation Model
Under MVCC a version is said to be invalidated whenever a suc-

cessor version exists. There are two possible invalidation models

[9] (Figure 6). First, two-point invalidation is the state-of-the-art

model, where the creation timestamp of the successor version is

also placed as invalidation timestamp on the predecessor. Two-
point invalidationworks well with old-to-new ordering. However,

with new-to-old ordering, the invalidation timestamp must be

set on the predecessor version, yielding an in-place update and

possibly a random write. Second, with one-point invalidation [11],
the existence of a successor implicitly invalidates the predeces-

sor and all version-records contain only the creation timestamp.

One-point invalidationmatches well new-to-old ordering, the use

of indirection layer (VIDs, and entry-points) as well as append-

based storage.

Tuple t
version t.v2

t.v2 1 TXu2 TXu3...

Tuple t
version t.v1

t.v1 3 TXu1 TXu2...

Two-Point Invalidation One-Point Invalidation
Tuple t
version t.v2

t.v2 1 TXu2...

Tuple t
version t.v1

t.v1 3 TXu1...

Figure 6: Version Invalidation Model

3.4 Garbage Collection
Under MVCC modifications of a tuple result in the creation of a

new tuple-version. Old tuple-versions become obsolete, if they

are no longer visible to any of the active transactions. Therefore,

some form of version GC is necessary to reclaim space and can im-

prove performance. However, GC causes performance spikes (as

it interferes with foreground I/O), reduces concurrency (as some

form of locking is required) and increases write-amplification

on secondary storage. GC [23] can be performed on transaction

[14], tuple and index levels [15, 22]. Index-level GC (Section 4.6)

purges index entries, resulting from index updates, maintenance

or tuple-level GC.

3.5 Version/Index-Record Referencing
There are two possibilities to map index records to tuple-versions

in base tables (Figure 7). First, classical physical references (recor-
dIDs) can be used. Thus, the latest tuple-version in base tables

(entry-point in the version chain) can be accessed directly, but

changes to the latest version or its location result in index-record

modifications. Such changes comprise: creation of a successor-

version; storage management and physical movement (as in ap-

pend storage) or garbage collection. Second, an indirection layer

with logical references can be employed. Each tuple-version is

augmented with an unique tuple-identifier (Virtual Tuple Identi-

fier – VID), which is also stored in the index records. An index

operation resolves the VID using a mapping table (indirection

layer) to locate the physical entry-point. An indirection layer
can reduce index maintenance costs for in-place and out-of-place
updates, but requires additional structures and processing.

Tuple t version t.v3

t.v3 7 TXu3 -VID(t)

Tuple y version y.v1

t.v2 7 TXu2 TXu3VID(t)

y.v1 11 TXu3 -VID(y)

t.v1 7 TXu1 TXu2VID(t)

y.v0 13 TXu1 TXu3VID(y)

t.v0 7 TXu0 TXu1VID(t)Ph
ys

ic
al

ly
 M

at
er

ia
liz

ed

VID(t)

In
di

re
ct

io
n

La
ye

rRecordID
(latest version)

Tuple
(VID)

recordID(y.v1) VID(y)

Index
Record

Index

Search Key
Values

Transaction
TimestampVID... ...

entry-point to version
chain of tuple y

Physcial Reference Logical Reference

recordID(t.v3)

...

...

...

...

...

...

 recordID

Figure 7: Version/Index-Record Referencing

Traditional index designs use physical references and contain

no version-information, which tends to increase index mainte-

nance overhead as well as the visibility check costs for lookups

and scans. Alternatively, modern index-structures (BW-Tree) use

an indirection layer, but contain no version-information and sup-

port no index-only visibility check. This can cause massive read

amplification for mixed workloads. An optimal index structure

should reduce write amplification and return only references to

tuple-versions that are visible to a transaction snapshot. MV-PBT

uses physical or logical references, is version-aware and produces

append-only sequential write pattern.

3.6 Discussion
Wehave outlined some relevant design decisions for storing tuple-

versions in multi-version DBMS. Modifications are preferably

stored as physically materialised tuple-versions in base tables,

rather than deltas, due to tuple reconstruction costs. Moreover,

this enables direct access to each tuple-version from additional

access paths. Out-of-place updates reduce write amplification

to secondary storage. Garbage collection is required for space

reclamation, but brings additional complexity to data structures.

A new-to-old version ordering requires index maintenance for

every new tuple-version, because the entry-point of the version

chain for that tuple changes. A logical indirection layer ensures

fast lookups by efficiently returning the entry-point of a version

chain and reduces index maintenance effort. New-to-old order-

ing is beneficial for OLTP and speeds up visibility-check as the

latest version ist typically the visible one, yet older versions may

require slow reconstruction. Alternatively, old-to-new ordering

is supports long-running OLAP operations and visibility-check

in HTAP settings, as the oldest version is directly accessible. Yet,

modifications and maintenance may suffer low performance.

Indices for mixed workloads and large datasets should rather

return visible tuple-versions. Alternatively, traditional index struc-

tures only return version candidates, which have to be subse-

quently verified, fetching version-records from base tables by

performing random I/O. For these reasons MV-PBT rely on phys-

ically materialised versions, out-of-place updates, a new-to-old

ordering, one-point invalidation and can do without an indirec-

tion layer.

3.7 Storage Characteristics
Modern database storage management needs to address the char-

acteristics of semiconductor storage technologies [20]. Consider

Figure 8, which deptics the I/O characteristics of the enterprise

Flash storage used in the evaluation. Typical index search opera-

tions result in large amount of small (8K) random reads. Hence,

optimize for read IOPS and sequential writes (≥64K). We derive

the following tradeoffs for the I/O behaviour ofMV-PBT: (a) trans-

form random writes in sequential writes with higher granularity

(MB); and (b) trade sequential writes for complex and possibly

random reads with higher parallelism and smaller granularity

(KB). Thus, append-based storage managers are beneficial for the

base tables [9, 11]. Write-sequentialization is therefore necessary

for indices, and MV-PBT supports it intrinsically, like LSM-Trees.

Blocksize [KB] 8 64 8 64
Iops 122382 24180 11104 1343

MB/s 956 1511 87 84
Iops 112479 23631 7185 56

MB/s 879 1477 1184 74

Read Write

Sequential

Random

Figure 8: I/O Characteristics of Intel DC P3600 SSD.

4 MULTI-VERSION PARTITIONED B-TREES
Multi-Version Partitioned B-Trees (Figure 9) are based on Parti-

tioned B-Trees (PBT), introduced by Goetz Graefe [12, 13]. PBT

in turn represent an enhancement on traditional B
+
-Trees[4].

PBT (and MV-PBT) create index partitions based on an artificial,

leading key-column – the partition number. All index-entires in a

partition have the same partition number in the search key. PBT

(and MV-PBT) utilize a portion of the database buffer (partition
buffer) to host the latest partition PN , where insertions and up-

dates to existing partitions (P0 . . .PN−1) are placed. Updates to
existing index entries are treated as replacement records to avoid

in-place updates. Once PN gets full it is appended to persistent

storage and becomes immutable.

DB BufferPartition P0 Partition P1
... PN-1

MV-PBT Buffer

PN

Append to
storage,

when full

Partition PN

MV-PBT
Record

Insertions and updates of P0 - PN-1 go in PN

Multi-Version Partitioned B-Tree

Partition
Number

Search Key
Values recordID Transaction

Timestamp Ty
pe

MV-PBT Search Key

Leaf
Node

Si
bi

lin
g

Po
in

te
r

Si
bi

lin
g

Po
in

te
r

Figure 9: Structure of a Multi-Version Partitioned B-Tree.

Regular MV-PBT records comprize of a partition number, its
search key columns, and a recordID (set). Furthermore, MV-PBT

index records contain version-information: logical transaction
timestamp for validation or invalidation of the tuple-version and

optionally an unique virtual identifier (indirection layer). Each

partition number identifies a single partition. Partition numbers

are unique, monotonically increasing, two-byte integer values.

This enables the MV-PBT to maintain partitions within one single

tree structure in alphanumeric sort order. The partition number

is an artificial column and is therefore transparent to higher data-

base layers. Each MV-PBT maintains partitions independent of

other MV-PBTs. Partitions appear and vanish as simple as insert-

ing or deleting records. They can be reorganized and optimized

on-line in system-transaction merge steps, depending on the

workload. Partitions can support additional functionalities, like

bulk loads or can serve as multi-version store[13].

MV-PBTs write any modification of index records exactly once

– upon eviction of a partition, except for later reorganization or

garbage collection operations. This is realized by forcing sequen-

tial writes of all leaf nodes in a partition (Figure 9). Leaf nodes

of modifiable main memory partitions are stored in a separate

buffer cache – the MV-PBT Buffer. This area is shared for all MV-

PBT indices in the database. Once the MV-PBT Buffer gets full,

a victim MV-PBT is selected and its PN is written to secondary

storage. The MV-PBT Buffer is managed by a special replacement

policy, giving active partitions the chance to grow (Section 4.5).

4.1 MV-PBT Record Types
Persistent index partitions are immutable. Direct modification-

operations are forbidden. Therefore, modifications to existing

index-records as well as insertions are placed in the buffered

partition PN . To handle this behavior MV-PBT introduces new

index-record types. Currently the following are defined.

Transaction TXU0: insert

INSERT INTO r VALUES (7, 'V0');

Transaction TXU1: non-key update

UPDATE r SET z='V1' WHERE a=7;

Transaction TXU2: index key update

UPDATE r SET a=1 WHERE a=7;

Transaction TXU3: delete

DELETE FROM r WHERE a=1;

P0 P1 P3P2

P0 7 recID(t.v0) TXU0

P1 7 recID(t.v1) TXU1 recID(t.v0)

P2 7 recID(t.v1) TXU2

P3 1 recID(t.v2) TXU3

Regular Record

Replacement Record

Replacement Record Anti-Record

Tombstone Record

(1) (2) Table R a z
tcreat

ion
tinvalid

ation

version t.v0 7 TXu0 TXu1

version t.v1 7 TXu1 TXu2

version t.v2 1 TXu2 TXu3

version t.v3 tombstone TXu3 null

V0
V1
V1

1

2

3

4

Replacement
Record

Partition
Number

Search Key
Values

 recordID
new version

Transactional
Timestamp

P1 7 recID(t.v1) TXU1

 recordID
old version

recID(t.v0)

Anti-Record Partition
Number

Search Key
Values

 recordID
old

Transactional
Timestamp

P2 7 recID(t.v1) TXU2

Tombstone-
Record

Partition
Number

Search Key
Values

 recordID
old

Transactional
Timestamp

P3 1 recID(t.v3) TXU3

Regular Index
Record

Partition
Number

Search Key
Values recordID Transactional

Timestamp

P0 7 recID(t.v0) TXU0

Insert
(TXU0)

Non-Key
Index Update

(TXU1)

Index-Key
Update
(TXU2)

Deletion
(TXU3)

P2 1 recID(t.v2) TXU2

P2 1 recID(t.v2) TXU2 recID(t.v1)

recID(t.v1)

Index-Key update

Figure 10: MV-PBT Index-Record Types and Their Use:
MV-PBT record format (top), an example including a se-
quence of transactions and their index records (bottom).

Regular Index Records are created upon the insertion of

new tuples. The partition number of the newest MV-PBT partition

PN is inserted together with the search key values. The recordID
(pageID and slot) of the newly inserted tuple-version is included

as well as the transaction timestamp of the inserting transaction

(Figure 10). The latter is essential for index-only visibility-checks.

For example, transaction TXU 0 (Figure 10) inserts a new tuple

(t), in its initial version (t .v0), causing the creation of a regular
index record in partition P0.

Replacement-Records result from tuple-updates on non-
index key columns on existing index-entries. Such updates yield

a new tuple-version that becomes the new chain entry-point,

which needs to be reflected in the index. Although the index-

record for the previous version has not changed (non-index-key

update) the version-information and recordID of the new ver-

sion need to be replaced. However, this is not possible, if the

index-record is already in an immutable partition (P0. . .PN−1).
Therefore a replacement record is inserted in the newest partition

PN to logically replace the old one with the recordID and the

version-information. The Replacement Record (Figure 10) con-

tains: the recordID of the new version, its creation-timestamp as

well as the recordID of the predecessor version. Hence the record

includes some "anti-matter" [13] (recordID) invalidating the pre-

decessors as well as some "matter", i.e. recordID and timestamp

if the new version. For example, transaction TXU 1 (Figure 10)

updates the attribute z of the previously inserted tuple (t), pro-
ducing a new version (t .v1). Although the index-key 7 remains

unchanged, the version-information of (t .v1) has to be updated,

causing the creation of a replacement-record in partition P1.

Anti-Records are required for updates on index-key attributes
and are always used in combination with replacement records in
the same partition. If the index-key of an existing index-record (in

the immutable partitions) gets updated, MV-PBT inserts a combi-

nation of an anti-record and a replacement record. Anti-records are
pure "anti-matter" as they mark the extinction of the old index

record (from partitions P0. . .PN−1), whereas the simultaneously

inserted replacement record represents the new "matter" and re-

flects the new index-key and the new version-information. The

anti-record and the replacement record are inserted in PN and

are placed according to the sort-order of the search-key value.

An anti-record contains the recordID of the old version, together

with its search key and the transaction timestamp of the updating

transaction (Figure 10). For example, transaction TXU 2 (Figure

10) updates the indexed attribute a of the previously inserted

and updated tuple (t), producing new version (t .v2), modifying

the index-key from 7 to 1. The anti-record (marking the extinc-

tion of the replacement-record from partition P1) reflects the
recordID of the predecessor version (t .v1), contains its index-key
values (7) and the transaction-timestamp of the current updating-

transaction (TXU 2). The simultaneously inserted replacement

record reflects the new and updated value of the search key (i.e.

1), the recordIDs of the old and the new tuple-versions (t .v1 and
t .v2) as well as the transaction-timestamp of TXU 2. Since the in-

dex records are kept in sort order of the search-key values within

a partition (as in a B-Tree), the replacement record is placed first

in order, followed by the anti-record.

Tombstone-records indicate the deletion of a tuple. If a tuple
is logically deleted, it does not become erased immediately in

MV-DBMS, because it could be visible to a concurrent transaction.

Rather a tombstone tuple-version record is inserted in the DB,

which needs to be reflected in the MV-PBT index. Tombstone-
records are similar to Anti Records in that they represent pure

"anti-matter", marking the extinction of the whole tuple-version

chain. The difference is that if a tombstone-record is visible to

a transaction, no further tuple-version belonging to this chain

can be visible, even no replacement record. Tombstone-records
(Figure 10) contain the recordID of the latest tuple-version and

the transaction-timestamp of the deleting transaction.

For example, transaction TXU 3 (Figure 10) deletes tuple (t),
creating a tombstone-version (t .v3) in the DB. Therefore a tomb-

stone record is inserted in partition P3 with the recordID of the

deleted tuple-version t .v2, reflecting deletion of the whole ver-

sion chain t .v2 → t .v1 → t .v0.

4.2 MV-PBT Operations
In the following we describe the index operations in an MV-PBT:

• Insert Operations are only performed in PN . An insertion yields
the creation of an regular index-record in PN with the recor-

dID of the newly created tuple-version and the timestamp of

the creating transaction. The insertion traverses the buffered

partition PN and places the new index record according to

the alphanumeric sort-order of the search-key (ordering issues

are described in Section 4.3). The MV-PBT buffer management

strategy (Section 4.5) guarantees sufficient space for the in-

sertion and possible maintenance. In case of an non-unique
index the insertion is performed directly. Alternatively, given

a unique index, a lookup operation (see Search and Scan) is per-

formed ahead of the inseartion to guarantee the non-existence

of the new index-key.

• Update Operations are performed in different ways. If a trans-

action modifies a tuple-version in a way that a non-index-key

attribute is changed (non-key update) a new tuple-version is

created and its version-information needs to be reflected in the

index. In case of non-key updatesMV-PBT inserts a replacement-
record in PN (Figure 10), containing the version-information

(recordID and timestamp) of the modifying transaction. By

doing so, it logically replaces the index-record, which is located

in an older partition, and reflects the predecessor version.

Alternatively, if the modifying transaction updates an index-

key attribute (index-key update) a replacement record as well as

an anti-record are inserted in PN (ordering issues are described

in Section 4.3). The former reflects the new and modified index-

key value in the new tuple-version, the latter indicates the

extinction of the old index-record, reflecting the index-key

value of the predecessor version. In case of an unique index, the
MV-PBT first performs a lookup to ensure the non-existence

of the new key-value.

• Delete Operations cause the insertion of a tombstone record in

PN . If a transaction deletes a logical-tuple a tombstone version

is created indicating the deletion of the whole version-chain,

to transactions to which it is visible. Analogously, MV-PBT

inserts a tombstone record to indicate the extinction of all index-

records corresponding to the version chain. Ordering issues

are described in Section 4.3.

• Search and Scan Operations process partitions in reverse order

from PN to P0. Filter techniques such as Partition Range Keys,
Minimum Transaction Timestamp or Bloom- and Range Filters
(Section 4.7) are needed for selecting the predeceasing parti-

tion which may contain an index record, matching the search

conditions (Algorithm 1). The search conditions are extended

to match the format of an MV-PBT – the partition number is

prepended to the first search key column. A regular root-to-leaf

traversal operation is performed and the cursor is positioned.

Afterwards, the next matching index record is requested and

checked for visibility (Section 4.4). This process is repeated un-

til an index record, visible to current transaction is found, and

can be returned together with the respective recordID. Partition
number and timestamp are transparent for higher database

layers. Index records of most recent tuple versions are found

and processed first, due to index-record ordering (Section 4.3),

which is very beneficial for simple search conditions, like point

lookups.

Complex scan operations (Algorithm 2) build a set of all match-

ing index records, spreading all MV-PBT partitions. Every parti-

tion is pre-selected by filter techniques and processed from PN
to P0. Traversal operations benefit from commonly buffered

higher levels of the tree-structure. Matching index records of

any record type in a partition are processed by the index-only

visibility-check. Visible index records are added to the result

set without partition number and timestamp in regular sort

order. If no further index record matches the scan conditions,

the algorithm proceeds with the preceding partition. Finally,

the result set is returned. It is filled with all index records (in-

cluding recordIDs), matching the scan and visibility conditions

of the calling transaction.

A single scan process without rechecking for concurrent mod-

ifications in PN is sufficient, due to transaction snapshots as

concurrent modifications in PN are invisible, anyway. Expen-

sive retrieval of version-records from the base-table (random
read I/O) for version-information is avoided. In case of selection

of non-index attributes, the recordID indicates the location

of version-record in the base-table, which can be directly ac-

cessed.

Algorithm 1MV-PBT Search

1: function search(Search conditions |attrval,cond |, ...)
2: Output: IndexRecord
3: while hasNext() do
4: Let idx_record ← next() ▷ fetch next index record

5: if VisCheck(idx_record) equals V ISIBLE then
6: return set_return_format(idx_record)

▷ hide partitionnumber and timestamp

7: while part ← previousPartition(part) do
8: if |attrval,cond | ∈ part . f ilter then
9: Let |skeyspar t | ←

form_rec(part , |attrval,cond |)
10: traverse(|skeyspar t |)
11: return search()

12: return ∅

Algorithm 2MV-PBT Scan

1: function scan(Scan conditions |attrval,cond |, ...)
2: Output: ResultSet of |IndexRecords |
3: part ← ∅ ▷ previousPartition returns PN for ∅

4: while part ← previousPartition(part) do
5: if |attrval,cond | ∈ part . f ilter then
6: Let |skeyspar t | ←

form_rec(part , |attrval,cond |)
7: traverse(|skeyspar t |)

8: while hasNext() do
9: Let idx_record ← next() ▷ neighbor in BTree

10: if VisCheck(idx_record) equals V ISIBLE then
11: |IndexRecords |.add(

set_return_format(idx_record))

12: return |IndexRecords |

4.3 MV-PBT Index-Record(Version) Ordering
The version/partition-placement in MV-PBT is governed by mod-

ification, search and scan algorithms. Index-records of predecessor
versions are likely to be located in lower-numbered partitions, suc-
cessors in higher-numbered ones (Figure 10). This however neces-
sitates multiple memory partitions for an MV-PBT.

To address such issues the currentMV-PBT design uses a single

main-memory partition PN for each MV-PBT. However, for index-
records with the same index-key it is mandatory that records for
newer/successor versions are always placed before index-records for
older/predecessor versions in PN . In other words the primary sort-
order of the index-records in a PN is on the search-key (mostly

descending), however all records with the same search-key are

sorted in inverse secondary sort-order (mostly ascending) on the

transactional timestamp.

Search and scan operations traverse partitions backwards:
starting from buffered partition PN (i.e. PN → PN−1 · · · → P0).
Yet, given the above ordering, index-records of newer tuple-

versions, matching the search predicates, are processed first in
forward direction (i.e. in descending timestamp-order). Only then

the next lower-numbered partition is traversed and processed.

This is how MV-PBT ensures that in a search and scan operation,

newer versions can always be found before older ones in the same
partition, and across partitions.

Consider for example Figure 11, where we have only two

partitions and index-records reflecting updates to the same tuple

go to P1, and contrast to Figure 10, where all index-records with

higher-timestamps are placed in higher-numbered partitions.

Observe that the index-records in P1 (Figure 11) appear in their

primary-order (on the search key), i.e. records with search-key

1 precede those with 7. Observe also that the tombstone record
with key 1 precedes the regular record as a result of the secondary
sort-order since timestamp(TXU 3) > timestamp(TXU 2).

Transaction TXU0: insert

INSERT INTO r VALUES (7, 'V0');

Transaction TXU1: non-key update

UPDATE r SET z='V1' WHERE a=7;

Transaction TXU2: index key update

UPDATE r SET a=1 WHERE a=7;

Transaction TXU3: delete

DELETE FROM r WHERE a=1;

P0 P1

P0 7 recID(t.v0) TXU0 P1 7 recID(t.v1) TXU1 recID(t.v0)

P1 7 recID(t.v1) TXU2

Regular Record Replacement Record

Replacement Record Anti-Record

Tombstone Record

(1) (2) Table R a z
tcreat

ion
tinvalid

ation

version t.v0 7 TXu0 TXu1

version t.v1 7 TXu1 TXu2

version t.v2 1 TXu2 TXu3

version t.v3 tombstone TXu3 null

V0
V1
V1

1

2

3

4

P1 1 recID(t.v2) TXU2 recID(t.v1)

1 recID(t.v2) TXU3P1 Index-Key update

P1 7 recID(t.v1)
TXU1 recID(t.v0)

P1 7 recID(t.v1)
TXU2

P1 8
recID(t.v2) TXU3

Replacement
Record

Repalcement
Record

Anti-Record Tombstone
Record

P0 P1

P0 7 recID(t.v0)
TXU0

Regular Record

P1 8 recID(t.v2)
TXU2 recID(t.v1)

Alternatively: TXU3 and TXU4
UPDATE/DELETE ... WHERE a=8;

Index-Key update

Figure 11: MV-PBT Index-Record Ordering.

4.4 MV-PBT Index-Only Visibility-Check
MV-PBT is version-aware and supports index-only visibility-check,
i.e. it returns a set of index records matching the search condition

and visible to the calling transaction. In doing so, MV-PBT avoids

the expensive retrieval of base-table version-records to extract

their version-information.
The index-only visibility-check (Algorithm 3) is inherently sup-

ported by the data structure. MV-PBT index records (Section

4.1) contain version-information and define modifications and

recordIDs of tuple-versions. The respective index-record ordering
is essential to scans (Section 4.3), whereby records indicating the

invalidation of a tuple-version are guaranteed to be placed before

the “validating”-records for a given transactional timestamp.

Index records of any type, matching the search-conditions

are processed by the visibility check. They are invisible to a

transaction, if:

(a) the index record is flagged for garbage collection;
(b) the transaction timestamp of the index-record is greater than

the timestamp of the calling transaction; or

the transaction corresponding to the index-record timestamp

is concurrent to the calling transaction;

(c) visible record with anti-matter for the recordID (anti-matter,

replacement- and tombstone-records) was already encoun-

tered (in this case also checked for GC); or

(d) the index record is either a tombstone record or an anti-record.
An additional visibility-check by processing the version chain in

base table is not required. Skewed updates on tuples do not lower

the performance of the index-only visibility check, due to well

performing garbage collection and well-cached version-chains

in the main-memory partition PN .

Algorithm 3MV-PBT Index-Only Visibility-Check

1: function VisibilityCheck(idx_record)
2: input: idx_record at current scan position

3: output: BOOL_V ISIBLE
4: Let anti_map ← Map of (recID |TS) ▷ anti-matter

5: if IS_SET(idx_record, FLAG_GC) then
6: return INV ISIBLE
7: if not precedes(idx_record .ts,CurrentTxId) OR

isConcurrent(idx_record .ts,CurrentTxId) then
8: return INV ISIBLE
9: if tsanti ← anti_map.get(idx_record .recIDmatter)

and precedes(idx_record .ts, tsanti) then
10: checkForGC(idx_record)
11: return INV ISIBLE
12: if IS_SET(idx_record, FLAG_ANTI_MATTER) then
13: anti_map.put(idx_record .recIDanti , idx_record .ts)

14: if IS_SET(idx_record, FLAG_MATTER) then
15: return V ISIBLE
16: return INV ISIBLE

4.5 MV-PBT Buffer Management
MV-PBT accumulate modifications to persistent partitions in the

latest partition PN , which is held in the MV-PBT partition buffer

(Figure 9). All MV-PBT indices place their respective PN in the

MV-PBT buffer, which rises the question of the proper buffer man-

agement strategy. Well-known replacement policies (like LRU or

ARC) are not suitable for managing the set of leaf nodes contained

in the respective PN as well as different PN . The MV-PBT buffer

should (a) only evict partitions as a whole instead of individual

pages (like in LRU) to achieve sequential write patterns; and (b)

give partitions of update intensive indices a fair chance to grow,

and balance it across all indices. Remember that MV-PBT read

operations place persistent partition nodes in the main/shared

DB-Buffer. MV-PBT buffer-management strategy can be summa-

rized as follows. Whenever the buffer-size threshold is reached

the MV-PBT buffer manager selects the largest partition of all

indices as a victim for eviction. Smaller, less update-intensive

partitions are frequently evicted to avoid imbalanced number of

partitions per MV-PBT and shrinking partition sizes.

The eviction process (Algorithm 4) can be summarized as fol-

lows. A new partition numbered PN+1 (initially PN+2) is created
for ongoing modifications. The current victim partition PN be-

comes immutable and is scanned, as following operations are

performed cooperatively and latch-free, piggybacking that scan.
(1) Version-chains are built for each of the Scan-ResultSet records,

using their timestamps and RecordIDs, and creating a tem-

porary VID for each chain. While doing that, obsolete index-

records (parts of the version-chain) are detected and marked

for garbage collection.

(2) Garbage Collection is performed on the marked records (no

longer needed/invisible records are removed) and the result

is written out to new leaf nodes.

(3) During this process index-records and leaf nodes are trans-

formed to an on-disk format, whereby prefix-truncation, com-

pression and encoding as well as dense-packing (Section 4.7)

are performed. Furthermore, the partition number of each

index record is decremented from PN to PN−1. Now PN−1 is
a separate partition, which is yet unknown in the MV-PBT

partition metadata. The process resembles a leaf-build in Post-

greSQL: having full leaf pages the intermediary index nodes

can be easily built on top. Concurrent, lookups and scans are

still performed on the old PN nodes.

(4) In parallel, well-sized (prefix-) bloom filters are created (Sec-

tion 4.7).

(5) Dense-packing, compression and read-optimizations are per-

formed to higher level intermediary nodes, resembling a

bottom-up build. All nodes are sequentially written out.
(6) Finally, PN−1 is added to the MV-PBT partition metadata. The

old PN leaf nodes, on which concurrent non-blocking reads

had been executing, are detached from the MV-PBT and are

freed for reuse.

Algorithm 4 MV-PBT Partition Eviction

1: function evict(|PN |)
2: Input: set of PN in MV-PBT buffer

3: Let pevict ←SelectEvictionVictim(|PN |)
4: Add Partition pevict+1 to B

+
-Tree PartitionsList

5: SET(pevict , FLAG_IMMUTABLE)
6: Let recordSet ← scanRecords(pevict)
7: garbageCollectionP3(recordSet)
8: worker1.loadAndFlush(pevict .pNo − 1, recordSet)
9: worker2.createFilters(pevict , recordSet)
10: wait()

11: Letpevict_new ←decrementPartitionNumber(pevict)
12: detatchAndFree(pevict)

4.6 MV-PBT Partition Garbage Collection
Mixedworkloadswith high update-rates result inmassive amount

of tuple-versions, which need to be garbage collected once a long-

running reading/analytical query completes [14]. Same is true

for the corresponding index-records. With high probability these

records are located in the main-memory partition PN of an MV-

PBT due to their temporal locality. Therefore, we implemented a

cooperative page-level garbage collection (GC) for PN .

Phase (1): The GC piggybacks regular index-scans to identify

index-records of versions, that are not visible to any active trans-

action (cutoff-transaction). As a page is already latched (shared),

the following checks a performed on each record: (a) comparison

with the lowest active transaction timestamp and if lower, mark

predecessors as victim-versions for GC; (b) if higher, but a succes-
sor exists, mark all predecessors as victims for GC. In both cases,

a hasGarbage flag is set in the page header (no exclusive latch

required). This step also piggybacks the in-memory structures of

the scan and index-only visibility check algorithms. Records with

anti-matter (anti-matter, replacement and tombstone records) re-

quire special attention, as they are still required for invalidation

of predecessors. Hence the anti-matter record with the highest

timestamp smaller than cutoff transaction timestampmust not be

garbage collected. Index-record ordering (Section 4.3) supports

GC while scanning, since successors are mostly processed first.

Phase (2): Update operations check the hasGarbage flag in page

header. If set they first set the recordID of the oldest required

record with anti-matter (anti-matter, replacement and tombstone

records) to the recordID of the oldest victim-version of that chain

on the page. Next, GC victims are removed on that page, the space

is reclaimed and only then the update operation proceeds. This

behavior saves memory, speeds up scans and visibility checks as

well as reduces index maintenance operations (split).

Phase (3): To handle version-chains spanning several pages, and

for final cleanup before partition eviction the whole partition

is scanned and the version chains (based on timestamps and

records) are built in memory. This scan is also piggybacked for

filter creation and dense-packing (Section 4.7). Before switching

to sibling page, obsolete versions are removed after updating

invalidation reference and in-memory version chain is updated.

4.7 MV-PBT Filters and Optimizations
Various optimizations can be performed, based on the fact that

once written to storage MV-PBT partitions are immutable.
Bloom Filters. Each MV-PBT partition has a bloom filter (BF)

on the search key. Using bloom filters accelerates key lookups

(point-queries) in a partition, by avoiding unnecessary scans.

Whenever a key lookup is performed, a BF-query executed first,

to verify whether the key does not exist in the partition. If it does

not exist MV-PBT proceeds with the next partition. Alternatively,

if the BF returns true (i.e. the key may exist), MV-PBT scans the

whole partition.

Our experimental evaluation (Figure 13) indicates that the av-

erage BF size is small – in the order of few hundred KB. Therefore

frequently used filters are usually cached in the MV-PBT buffer.

Furthermore, their precision is 98% on average, thus false posi-

tives and therefore superfluous scans are rare. BF is is computed

efficiently on eviction, piggybacking existing maintenance scan

and is persisted as part of the partition metadata.

Range Filters. Partition bloomfilters accelerate point lookups,

but cannot handle range predicates. Currently, we employ prefix
Bloom Filters (pBF), if appropriate, to speedup range scans.

Dense-packed, Read-Optimized immutable storage. Since
a partition is immutable once persisted, various space and read-

optimization techniques can be applied. Dense-packing is used

to perform coalescing and free-space optimzation. When in-

memory leaf nodes are on average 67% full to accumulate modifi-

cations and avoid splitting, however when persisted the the space

utilization can be maximized. MV-PBT performs dense-packing
as part of the final garbage collection and space reclamation.

Especially for non-unique indices MV-PBT performs recon-
celiation upon eviction to convert all regular records with the

same search key to a single regular record with a set of {recor-

dID, timestamp}, instead of holding separate record for each key

instance. The same is true for replacement records, where for

the same search key sets of {recordIDNEW , TimestampNEW ,

recordIDOLD } are created. Last but not least, compression tech-

niques such as prefix-truncation or delta-compression are per-

formed on the search key. Along the same lines, various read and

cache-aware optimizations can be performed.

5 EXPERIMENTAL EVALUATION
We present the analysis of Partitioned B-Trees (PBT) and MV-

PBT together with traditional B
+
-Trees (which serve as baseline)

in PostgreSQL 9.04. Standard, PostgreSQL uses an old-to-new
version ordering, physically materialized version storage and two-
point invalidation. Index records have a physical reference to

base tables – denoted as B-Tree (PG/HOT). PostgreSQL base

table storage was also modified to Snapshot Isolation Append

Storage (SIAS) [9, 11] with a beneficial append-only write pat-

tern, one-point invalidation and new-to-old version ordering.

We implemented and evaluated B
+
-Trees and PBT with physical

references and with logical tuple references on top of SIAS [9, 11].

Experimental Setup.We deployed PostgreSQL 9.04 and Post-

greSQL with SIAS [11] on an Ubuntu 16.04.4 LTS server with

an eight core Intel(R) Xeon(R) E5-1620 CPU, 2GB RAM and an

Intel DC P3600 400GB SSD drive. We used the well-known DBT-

2[1] TPC-C-like OLTP benchmark and mixed workload CH-

Benchmark [6] in OLTP-Bench [2, 8] for experimental evaluation.

The OS page cache is cleaned every second to ensure repeatable

and reliable results (even though conservative).

Mixed Workloads: CH-Benchmark. MV-PBT is designed

for large datasets and mixed workloads. We evaluate the through-

put of B
+
-Trees, PBT and MV-PBT under the CH-Benchmark [6]

in OLTP-Bench [2, 8]. MV-PBT doubles the analytical throughput
compared to B

+
-Trees (Figure 12a), improving it from 0.29 to 0.61

queries/transactions per minute. In the same time, MV-PBT yield

15% higher transactional throughput than B
+
-Trees (Figure 12a).

The performance improvements are mainly due to index-only
visibility-check and partition garbage collection. To illustrate the

combined effect we turn off both and repeat the experiment.

Consider now the lower MV-PBT performance bars in Figure

12a. Without partition garbage collection and index-only visibility-
check the OLAP performance drops by 75% from 0.61 to 0.16

queries per minute, whereas the OLTP throughput plummets

from 4232 from to 3093 tx/min.

MixedWorkloads: Index-OnlyVisibility-Check andGarbage
Collection. In a further experiment we investigate MV-PBT GC

and visibility-check in more detail varying the version-chain

length. We run the OLTP part of the CH-Benchmark and execute

a query on the same dataset (Figure 12b), however we pause it (us-

ing pg_sleep) for 30/60/90/120 seconds to simulate a long-running

query and vary the amount of transient versions and the chain

length. Clearly, as the version-chain length increases, index-only

visibility-checks gain importance, because unnecessary read I/O

on base table can be reduced.

We compare PBT and standard visibility-check in base table
(VC) to MV-PBT and index-only visibility-check (idxVC) (Figure
12b). As the query processing time and version-chain length

increase, index scans and VC of slow down PBT by an order of

magnitude. Even if the version-chain length has no linear growth,

pages in base table get evicted and need to be fetched more

frequently. MV-PBT performs idxVC however without garbage

collection (Figure 12b MV-PBT w/o GC), every index record of

successor tuple-versions has to be processed, likewise the scan

time increases proportionally with the length of the version-

chain. With garbage collection (Figure 12b MV-PBT w/ GC), the
number of scanned index records and the scan time remain almost

constant. However, GC requires additional processing and latches

index nodes in PN . Reading transactions have to wait for latches

and scan time increases - consider Figure 12b at 30 seconds sleep

time. As more index record get garbage collected, GC improves

the index scan time - compare MV-PBT with and without GC at

30 and 120 second (Figure 12b).

Sequential write-pattern/Append-based storage. Based
on the tradeoffs derived in Section 3.7. MV-PBT needs to sup-

port write sequentialization and append based storage. In this

experiment we evaluate the write pattern of MV-PBT (Figure 12c).

Using blktrace and blkparse we record an I/O trace during the

partition eviction from MV-PBT buffer. The X-axis represents the

����

����

����

����

����

��	�

����

���	

�

���

���

���

���

��

��	

���

���

���

�

��

�����

��
��

�����

��
��

�����

��
��

�����

��
��

��� ���

��
�
�
�
�
�
��
�
�
�
��
�
��
�
��
�
��
��
�

�
�
�

��
�
�
�
�
�
��
�
�
�
��
�
��
�
��
�
��
��
�

�
�
� �����

� �

!"� �

(a) Index Performance under Mixed Workloads (CH-Bnchmark)

�
��

�
��

�
�

��

�
�

��

�
�� �

�� 	
�� �
��

�
��

�
�� �
��

�
��

�

�

��

��

��

��

��

�

�

��

��

��

��

��

��

�� �� �� ���

�

�
��

�
��

�
�

��
��

�
�

�
��

��

�
�

�
�

�
�

�

�
�
�

�
��

��
�

��
�

�!��"�������

#$���
������������

%
&#$���'(��)��

%
&#$���'(�)��

(b) Standard vs. Index-OnlyVisibility-Check forDifferent Chain Lengths

 0,75 1,5 2,25 3

5
1

6
0

0
0

5
1

6
5

0
0

5
1

7
0

0
0

5
1

7
5

0
0

5
1

8
0

0
0

5
1

8
5

0
0

time (in ms)

L
B

A
 (

*
1

0
0

0
)

(c) Sequential Write Pattern of Eviction of a Single MV-PBT Partition

�����
�����

����� �����

	����
�����

		���
	����

��

���

����

��� ����
��� ����
��� ����
��� ����

�������� ������� ������ ���������

�
�

�

��
!
"�
�
�!
#
$
%
�&

'��
'!
�
%
(

�����') ��*��')

�����'%% ��*��'%%

(d) Requests / Cache Hit Rate for PostgreSQL Heap-Only
Tuples (HOT), Logical(LR) and Physical(PR) references

Figure 12: Index Performance under Mixed Workloads (CH-Benchmark)

eviction time; the average write I/O time is about 1ms. The Y-axis

represents the logical block addresses (LBA), i.e. the file system

addresses where the blocks of the index file are written. Each

red cross indicates the write of a single index node. A horizontal

line, therefore indicates a sequential write, i.e multiple blocks

are written onto neighbouring addresses over time. Hence the
sequential write pattern of MV-PBT. The horizontal lines in Figure

12c represent database extents and result from the database space
allocation strategy. Each evicted partition comprises leaf nodes

allocated in new extents of the index file, allocated at (mostly) ad-

jacent addresses by the file system. The overall sequential pattern
confirms the sequential append behaviour of MV-PBT.

MV-PBT Buffer Efficiency. Figure 12d shows the fetch re-

quests on index nodes (blue) and base table nodes (red) for an

OLTP benchmark. Furthermore, the cache hit-rate is depicted.

Requests yielding a cache-hit are displayed in brighter colours

than fetches (cache-misses) from secondary storage. The scale

of requests is logarithmic. The results are calculated for equal

throughput over the test duration and all tables and indices.

PBT and MV-PBT require more requests on index nodes due

to partitioning of index records and greater record sizes. Most

requests are on buffered nodes, because many queries can be

answered in the main memory partition. Index records of new

tuple-versions are common to be located there. MV-PBT reduces

the requests on base table by up to 40%, because the base table is

not required for visibility-check. The version chains are short for

this benchmark, for mixed workloads this effect is more weighty.

This can be seen at the reduced cache hit rate on base table nodes

in comparison to PBT. Most saved requests on base tables are on

new tuple-versions, which are located in main memory.

Partition Filters. Partition-based indices like MV-PBT, PBT

or LSM-Trees incur higher lookup and scan overhead than B-

Trees, sincematching records may exist in older partitions. Hence,

the effort of lookups and especially of scans increases with num-

ber of index-partitions, since in the worst case every partition has

to be traversed. Point lookups can stop partition traversal after

finding the first matching record, which is visible to a transaction,

since older partitions are guaranteed to contain older records.

81,8% Negatives 84,5% Negatives

0,6% False Positives

10,6% False Positives17,6% Positives
4,9% Positives

0%

20%

40%

60%

80%

100%

Bloom Filter Prefix Bloom Filter

Ef
fe

ct
iv

en
es

s
of

 F
ilt

er

24,28 0,57

0,36

0

5

10

15

20

25

30

Av
er

ag
e

Si
ze

 in
 M

B

Prefix Bloom Filter Bloom Filter
Partition

Partiton Bloom
Filter

Prefix Bloom Filter

Bloom
Filter

Figure 13: Effectiveness and Size of Partition Filters

Using Bloom filters (BF) (Section 4.7) point lookups can skip

partitions and increase throughput up to 10% under TPC-C (Fig-

ure 14c). Furthermore, prefix Bloom filters (pBF)may under certain

conditions speedup scans by skipping partitions not matching

the range predicate. pBF including a fixed set of scan attributes,

�����

�
�

�

�����

�
�

�
�

������������� �����

�����

�
�
�

�
�

������������� �����

��
�
�
�

�
�

������������� �����

	
��

�
�
�

�

�������������

�������!�
���"�#������
�$���

�
	
��

�
�
�

�������!�
���"�#������
�$���

�
�
	
��

�
�

�������!�
���"�#������

�����%�&
���	
��'�!��
�����

�$���

�
�
�
�
	
��

�

�����%�&
���	
��'�!��
�����

�
�
�
�
�
	
��

�����%�&
���	
��'�!��
�����

�
�
�
�
�
�
	

�����

��
�
�
�
�
�

�����

�
��

�
�
�
�

(����

�����

�
�
�
��

�
�
�

(����

�
�
�
�
��

�
�

(����

�
�
�
�
�
��

(����

�
�
�
�
�
�
�

(����

�
	

�
�
�
�
�
�

($���

(����

�
�
	

�
�
�
�
�

($���

�
�
�
	

�
�
�

($���

�
�
�
�
	

�
�

(����

��
�
�
�
�
	

�

(����

�
��

�
�
�
�
	

(����

(����

�
��

�
�
�

(�����
��

�
�

(�����
��

�

(�����
��

�

)���������)���������)���������

(a) Indirection Layer vs. Physical
Version-Record Reference

�����

�����

�����

�����

�����

�����

�����

�
��
	

�
�
�
�
	
�
��
�
�
��
�
�
�
�
�
��
��
�
�
�
�
�

�������
�

����������
���� �!���	��

�������
���� �!���	��

����"	#�����	�$����

������"	#�����	�$����

(b) Performance of Indexing
Approaches under TPC-C

�����

�����

�����

�����

�����

�����

�����

�
��

	

�
�
�
�
	
�
��
�
�
��

�
�
�
�
�
��
��

�
�
�
�

�

�������
�

���

���������������

��������!"�����������

(c) Influence of filter techniques
on Throughput under TPC-C

�����

�����

�����

�����

�����

�����

�����

�
��
	

�
�
�
�
	
�
��
�
�
��
�
�
�
�
�
��
��
�
�
�
�
�

�������
�

�������� !�"#$ �������� !��"#$

(d) MV-PBT Garbage Collection
under TPC-C

Figure 14: OLTP Performance Evaluation under TPC-C

increase the throughput by another 10% (Figure 14c). The preci-

sion of both Bloom filters is relatively high (Figure 13): the false

positives rate is 2% for BF and 10% for pBF, while the negatives
(skipping) rate is approx. 82% for BF and 84.5% for pBF. The size
BF and pBF is small relative to the partition size (Figure 14c): for

a 24MB partition BF is 0.57MB, while pBF is 0.36MB.

Since index operations only have a fair share of the whole

database operations under TPC-C (besides logging, CC and I/O)

the above numbers yield moderate performance improvements.

Comparison to LSM-Trees. LSM-Trees [17] are used asworkhorse

storage structure in many Key/Value stores for large datasets.

Today’s highly-optimized multi-level LSM-Trees with levelling

or tiering resemble MV-PBT as they exhibit an append-behaviour

and employ buffered components. We implemented MV-PBT in

WiredTiger [3], the high-performance KV-Store of MongoDB. In

this experiment we compare MV-PBT to LSM-Tree in WiredTiger

under YCSB [7] (Figure 15a). YCSB has been instrumented as

follows: a dataset of 100 million keys (approx. 100GB); workloads

A (30 mil. requests), B and D(10 mil. req.) and E (2 mil. req).

0,
61

 2,
90

9,
35

0,
42

 4,
20

2,
38

2,
34

0,
27

7,
31

14
,4

8

2,
51

0,
35

0

5

10

15

20

A B D E

Th
ro

ug
hp

ut
 [t

ho
us

an
d

Tx
/s

] BTree

LSM

MV-PBT

(a) MV-PBT, BTree, LSM-Tree under YCSB.

0

2

4

6

8

10

0

5000

10000

15000

20000

25000

0 30 60 90 12
0

15
0

18
0

21
0

24
0

27
0

30
0

33
0

36
0

39
0

42
0

45
0

48
0

51
0

54
0

57
0

N
um

be
r o

f M
V-

PB
T

Pa
rti

on
s

Th
ro

ug
hp

ut
 [T

x/
m

in
]

Execution Time [s]

Throughput MV-PBT Partitions

(b) YCSB Throughput (workload A) vs. Number of MV-PBT Partitions

Figure 15: Performance Evaluation under YCSB [7]

Workload A comprises 50% read and 50% update requests,

which require fast lookups and updates. MV-PBT is approx. 42%

faster than LSM-Trees. Each LSM level comprises multiple com-

ponents, which themselves are small read-optimised BTrees. A

search needs to process separate LSM components even though

some can be skipped (bloom filters). MV-PBT partition search

is faster than LSM component search, since the leaf nodes in

each partition are under the same common index. Updates in

MV-PBT hit PN , which accommodates more KV-pairs than the

main memory L0 in LSM-Trees. Workload B comprises 95% read

and 5% update requests, with zipfian distribution. BTree performs

random reads, the LSM Tree caches the updates, but has an equal

amount of random reads spread over more components. MV-PBT

have much lower index maintenance compared to BTrees and

place the updates in PN . The reads are performed with maximum

I/O parallelism. Workload D comprising 95% read and 5% update

requests, which given the latest distribution stress the memory

components and BTrees performs most of the operations in mem-

ory. MV-PBT is marginally better than LSM-Tree. Last but not

least, we run workload E comprising 95% scans and 5% insert

requests. Even though the scans are slow under MV-PBT, they

outperform LSM-Trees due to the faster search and updates.

Consider, Figure 15b depicting the YCSB throughput (work-

load A) and the number of MV-PBT partitions over time. The

throughput remains stable as the number of partitions increases.

OLTP: comparison of B-Tree alternatives. To establish the
baselinewe first compare standard PostgreSQL B-Trees (PG/HOT)

to B
+
-Trees with physical reference and indirection layer on top

of append-only storage (SIAS [9, 11]) under TPC-C. In Figure 14a,

we show the throughput for different dataset sizes. The buffer

cache of the DBMS is fixed to 600MB. B-Tree(PG/HOT) performs

well (Figure 14a) as long as the database buffer can accommo-

date most modifications. Under standard Postgres updates are

performed in base tables by Heap-Only Tuples (HOT), i.e. the

predecessor version is cached on the same page, on which its suc-

cessor is located. Therefore the index maintenance effort is low.

With growing data sizes (and therefore more modifications), the

throughput falls rapidly. Append-based storage and one-point

invalidation (SIAS [9, 11]) exhibit a robust throughput: (a) physi-
cal references (Section 3.5) yield lower performance, due to the

higher index management overhead; (b) an indirection layer re-
duces index maintenance for insertions and index-key updates,

yielding up to 30% better throughput. With larger datasets (≥
1200 warehouses) B-Trees with indirection outperform standard
PostgreSQL PG/HOT.

Indexing Approaches under OLTP. In a follow-up experi-

ment, we compare B-Tree with indirection layer (Section 3.5), to

PBT and MV-PBT under TPC-C (Figure 14b). PBT and MV-PBT

exhibit robust performance, which improves with larger datasets

compared to B-Tree. PBT with indirection layer exhibits high

and robust performance (Figure 14b). PBT with physical reference
to close the performance gap for larger datasets as the update

density decreases decreases with larger datasets. MV-PBT are
slower than PBT under OLTP workloads for several reasons. First,
less MV-PBT index records fit on the same sized PN , since their

sizes are larger because of the version-information (transaction

timestamps). Consequently, the number of partitions increases,

yielding more I/O. Second, the average version-chain length un-

der TPC-C is short: 1.15/2.18 versions for customer/stock respec-

tively [9]. Therefore, index-only visibility-checks cannot improve

performance significantly. Thus, MV-PBT exhibit 6% lower per-

formance than PBT under TPC-C (Figure 14b). We implemented

MV-PBT with an indirection layer as well as with physical refer-
ences (Section 3.5). Figure 14b depicts on the performance with

physical references for brevity, both curves are almost identical.

Therefore, MV-PBT are general enough to be implemented matching
the rest of the system design.

OLTP Garbage Collection. In this experiment (Figure 14d)

we quantify the performance effect of MV-PBT partition garbage

collection (Section 4.6). It improves performance between 5%

and 17% since old invisible versions are purged and need not be

processed by scans aswell as space is reclaimed lettingmore index

records fit in PN . The opportunity of improvement under OLTP is

however limited by the short average version-chain length: 1.15

versions for customer and 2.18 versions for stock under TPC-C

[9]. With HTAP workloads the amount of ’transient’ (short-lived

versions visible only throughout the duration of an analytical

query) versions increases rapidly as does the effect of garbage

collection. Garbage collecting larger amounts transient versions

has a major role on the performace improvment of MV-PBT over

PBT and B-Tree under mixed workloads (Figure 12a).

6 RELATEDWORK
Most popular indexing approaches in database management sys-

tems are based on B
+
-Trees. Their alphanumeric sorted structure

can result in high write amplification for high update rates and

visibility-checks require information, that is only located at tuple-

versions in base table. PostgreSQL uses Heap-Only Tuples (HOT)

to reduce index management operations. Index records refer-

ence items in base table, which point to tuple-versions in the

heap node. Corresponding tuple-versions are held on the same

node and can be located by processing the version chain. If a

tuple-version become garbage collected, the item is modified

to reference the next version. This indirection layer reduces in-

dex modifications, but cannot avoid write amplification of index

nodes and requires the base table for visibility-checking. Fur-

thermore the write amplification of base table nodes is increased

for large datasets. MV-IDX[10] maintains a virtual identifier for

each tuple and data nodes for each version as an indirection layer.

With Snapshot Isolation Append Storage (SIAS)[11] write amplifi-

cation on base tables is reduced in comparison to HOT, but index

management operations can cause a high write amplification

and base table nodes are still required for visibility-checking[21].

LSM-Trees[18] reduce write amplification due to collecting mod-

ifications in main memory components, but there is no concept

for managing tuple-versions and perform an index-only visibility-

check[21]. Time-Split B-Trees [16] and Multiversion B-Trees [5]

are able to separate index records of old tuple-versions from cur-

rent dataset and to perform an index-only visibility-check, but

maintenance operations are complex and can cause a high write

amplification of index nodes[21].

7 CONCLUSION
In the present paper we introduce MV-PBT as an approach to

multi-version indexing. An MV-PBT is an extension of a B-Tree,

where an artificial leading column is prepended to the search key

of each index record and index records are placed in a buffered in-

dex partition, which if full gets evicted and appended to persistent

storage. MV-PBT is version-aware, since index records contain

version-information and allow for index-only visibility check.

This is particularly beneficial for HTAP workloads since long

chains of transient versions exist due to the mix of short-lived

updating transactions and long-running queries. Furthermore,

MV-PBT exhibit a sequential write pattern due to the concept of

partition, which leads to less write-amplification and better uti-

lization of modern storage technologies. Under mixed workloads

(CH-Benchmark) MV-PBT doubles the analytical throughput 2x,

while improving the transactional throughput by 15%.

ACKNOWLEDGMENTS
This work has been partially supported by: HAW Promotion and

KPK Services Computing, MWK, Baden-Würrtemberg, Germany;

BMBF PANDAS – 01IS18081C/D; DFG Grant neoDBMS – 419942270.

REFERENCES
[1] 2019. Database Test Suite. https://sourceforge.net/projects/osdldbt/files/dbt2/

[2] 2019. Oltpbench. https://github.com/oltpbenchmark/oltpbench/

[3] 2019. WiredTiger (MongoDB). http://www.wiredtiger.com

[4] R. Bayer and E. McCreight. 1970. Organization and Maintenance of Large

Ordered Indices. In Proc. SIGFIDET (SIGMOD) 1970. 107–141.
[5] Bruno Becker, Stephan Gschwind, and et al. 1996. An Asymptotically Optimal

Multiversion B-tree. The VLDB Journal 5, 4 (Dec. 1996), 264–275.
[6] Richard Cole, Florian Funke, Alfons Kemper, and et al. 2011. The Mixed

Workload CH-benCHmark. In Proc. DBTest ’11. Article 8, 6 pages.
[7] Brian F. Cooper, Adam Silberstein, and et al. 2010. Benchmarking Cloud

Serving Systems with YCSB. In In Proc. SoCC2010.
[8] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-

Mauroux. 2013. OLTP-Bench: An Extensible Testbed for Benchmarking Rela-

tional Databases. Proc. VLDB Endow. 7, 4 (Dec. 2013), 277–288.
[9] Robert Gottstein. 2016. Impact of new storage technologies on an OLTP DBMS,

its architecture and algorithms. Ph.D. Dissertation. TU, Darmstadt.

[10] Robert Gottstein, Sergej Hardock, Ilia Petrov, and Alejandro Buchmann. 2014.

MV-IDX: Indexing in Multi-version Databases. In Proc. IDEAS 2014. 142–148.
[11] Robert Gottstein, Ilia Petrov, and et al. 2017. SIAS-Chains: Snapshot Isolation

Append Storage Chains. In ADMS@VLDB.
[12] Goetz Graefe. 2003. Partitioned B-trees - a user’s guide. In Proc. BTW. 668–671.

[13] Goetz Graefe. 2003. Sorting And Indexing With Partitioned B-Trees. In CIDR.
[14] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, and et al. 2016.

Hybrid Garbage Collection for Multi-Version Concurrency Control in SAP

HANA. In Proc. SIGMOD 2016. 1307–1318.
[15] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:

A B-tree for New Hardware Platforms. In Proc. ICDE 2013. 302–313.
[16] David Lomet and Betty Salzberg. 1990. The Performance of a Multiversion

Access Method. In Proc. SIGMOD 1990. 353–363.
[17] Chen Luo and Michael J. Carey. 2019. LSM-based storage techniques: a survey.

The VLDB Journal (19 Jul 2019).
[18] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

Log-structured Merge-tree (LSM-tree). Acta Inf. 33, 4 (June 1996), 351–385.
[19] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid Transac-

tional/Analytical Processing: A Survey. In Proc. SIGMOD 2017. 1771–1775.
[20] I. Petrov, R. Gottstein, and S. Hardock. 2015. DBMS on modern storage

hardware. In Proc. ICDE 2015. 1545–1548.
[21] Christian Riegger, Tobias Vincon, and Ilia Petrov. 2017. Multi-version Indexing

andModernHardware Technologies A Survey of Present IndexingApproaches.

In Proc. iiWAS 2017. 266–275.
[22] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, and et al. 2018. Building

a Bw-Tree Takes More Than Just Buzz Words. In Proc. SIGMOD 2018. 473–488.
[23] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An

Empirical Evaluation of In-memory Multi-version Concurrency Control. Proc.
VLDB Endow. 10, 7 (March 2017), 781–792.

https://sourceforge.net/projects/osdldbt/files/dbt2/
https://github.com/oltpbenchmark/oltpbench/
http://www.wiredtiger.com

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	3.1 Version Storage
	3.2 Version Ordering
	3.3 Version Invalidation Model
	3.4 Garbage Collection
	3.5 Version/Index-Record Referencing
	3.6 Discussion
	3.7 Storage Characteristics

	4 Multi-Version Partitioned B-Trees
	4.1 MV-PBT Record Types
	4.2 MV-PBT Operations
	4.3 MV-PBT Index-Record(Version) Ordering
	4.4 MV-PBT Index-Only Visibility-Check
	4.5 MV-PBT Buffer Management
	4.6 MV-PBT Partition Garbage Collection
	4.7 MV-PBT Filters and Optimizations

	5 Experimental Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

