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Abstract
In this paper, we present a new approach for achieving robust
performance of data structures making it easier to reuse
the same design for different hardware generations but also
for different workloads. To achieve robust performance, the
main idea is to strictly separate the data structure design
from the actual strategies to execute access operations and
adjust the actual execution strategies by means of so-called
configurations instead of hard-wiring the execution strategy
into the data structure. In our evaluation we demonstrate the
benefits of this configuration approach for individual data
structures as well as complex OLTP workloads.
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1 Introduction
Motivation:Within the last decade, we have seen differ-

ent hardware trends that significantly affected the design of
single-node database systems: (1) Increases in main-memory
capacities made it possible to hold even larger data sets
in RAM, thus eliminating the I/O bottleneck of accessing
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secondary storage (e.g., hard drives). (2) Moore’s Law and
Dennard Scaling required processor designers to move from
single-socket and single-core designs to multi-socket and
multi-core designs. As a result of these trends, we have seen
a rapid evolution of hardware designs differing in essential
characteristics not only memory capacities but also the un-
derlying topology of how cores and memory are connected
as well as cache sizes and coherence protocols.
A considerable body of existing work in DBMS research

has thus focused on optimising the design of core DBMS
data structures such as indexes for specific hardware con-
figurations and workloads. For example, there have been
various design alternatives proposed for classical B-trees to
adapt them to modern memory hierarchies and make them
more cache-conscious for read-heavy workloads [33, 34] or
to optimise their behaviour for high-contention scenarios
[25] under write-heavy workloads. A significant issue with
this manual tailoring of core DBMS data structures is that
not only their redesign involves high effort and reintegra-
tion into the DBMS but also that a design optimal for one
hardware generation and one workload might induce severe
performance degradation on another hardware generation
when underlying assumptions change.

An alternative to this approach is designing data structures
that can provide robust performance [18]. At its core, robust
performance means the ability of a data structure to pro-
vide acceptable performance for a wide variety of hardware
configurations and environmental conditions without adjust-
ing the fundamental data structure design. Achieving robust
performance for a data structure, however, is a non-trivial
problem because there can be many superimposed causes
degrading its performance, not all of which are foreseeable
given the speed modern hardware platforms evolve.
Contribution: In this paper, we thus present a new approach
for achieving robust performance. Instead of proposing a
single design that is robust against different workloads and
hardware characteristics, we suggest that data structures can
be adapted to a workload and hardware by simple means of a
configuration. The main idea to achieve this goal is to strictly
separate the design of a data structure from the actual access
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Figure 1: Robust throughput of the FP-Tree index
on 8 sockets through individually optimal configura-
tion using virtual domains (Opt. Configured) for Read-
Update 50/50 (R-U), Read-Insert 95/5 (R-I), and Read-
Only (R-O) YCSB workloads. Baselines are rigid par-
titioning strategies: Partition per NUMA region (SN-
NUMA), partition per thread SN-Thread), and a shared-
everything strategy (SE) without any partitioning.

operations and use a configuration policy for defining the
strategy of how to execute access operations on a particular
data structure in a declarative manner. This strict separation
provides us then with the flexibility to control execution by
simple means of a configuration that determines how the
access operations are actually executed, making the best use
of the underlying hardware.

Clearly, the configuration policy is at the centre of our ap-
proach. Thus a key question is: How is it defined and what is
its utility? The intuition behind a configuration policy is that
it partitions the resources (CPU cores as well as memory) of
a given multi-socket machine into so-called Virtual Domains.
This configuration policy is then used by the runtime system
to route tasks submitted by client threads to the responsible
virtual domains and send the results of a task back to the
client. One could now think that this sounds very much like
NUMA-aware processing strategies which modern DBMS
engines implement already today to split the resources of a
machine and partition the data structures accordingly.

However, NUMA-aware processing strategies solely split
the resources based on the hardware topology [21, 29, 31, 36]
(i.e., by sockets with their local memory or by single cores).
But, they ignore many important aspects of the software
stack on top, such as the characteristics of a given data struc-
ture and the workload which may (heavily) degrade perfor-
mance. For example, as we show in Figure 1, when using
write-heavy workloads for a modern tree-based index struc-
ture design that leverages Hardware Transactional Mem-
ory (HTM) of modern CPUs [27] we can see that, however,
when more than half of the cores of a socket concurrently
access the index structure, the performance degrades heavily
due to aborting memory transactions.

In contrast to classical NUMA-aware processing strategies,
our approach based on virtual domains allows to split the
resources of a given machine in arbitrary granularity (e.g.,

into virtual domains that span only half a socket) in order
to control contention for the data structures in an optimal
manner. As shown in Figure 1, our flexible configuration
strategy can provide superior performance across different
workloads over the rigid partitioning strategies.
Outline: Section 2 discusses the basic intuition of how to
provide robust performance for a real system which hosts
many different data structures before we give an overview
of our approach in Section 3. Sections 4 to 6 then present the
details of our main building blocks. Afterwards, in Section 7,
we present the evaluation showing the efficiency of our ap-
proach for different data structures as well as for executing
a typical OLTP workload. To wrap up, Section 8 gives an
overview of related work, and Section 9 concludes the paper.

2 The Art of Robust Performance
There exist many different causes for degraded performance
of core data structures in main-memory databases on multi-
socket hardware. In this paper, we focus on OLTP databases
whose workloads are mainly characterised by different mixes
of read and write statements ranging from read-heavy to
write-heavy mixes where these operations are typically ex-
ecuted over index structures such as modern versions of
B-trees or hash-tables. In the following, we first discuss the
main causes of performance degradation and how current ap-
proaches handle them before we elaborate on our approach
to robust performance by (re-)configuration.

2.1 Pitfalls of Rigid Architectures
The sources of performance degradation can be manifold.
One primary reason that causes performance degradation of
core data structures such as B-trees or hash-tables in main-
memory OLTP databases is the overly high-contention that
results from concurrent accesses (reads and writes) to the
same instance of an index structure [36]. Other reasons for
performance degradation include increased latencies as a
result of cross-socket memory accesses or high cache co-
herence traffic resulting from concurrent reads and writes
to the same memory [42]. In order to mitigate these effects,
different strategies have been devised.

A prevalent strategy to address the aforementioned issues
is (as discussed in the introduction already) to use a NUMA-
partitioned DBMS design tomitigate the negative side-effects
of cache coherence and increased latencies caused by cross-
socket traffic [24, 30, 32]. However, this design can still lead
to degraded performance since partitioning data structures
at the granularity of a socket can also turn out sub-optimal
leading to a too high contention for some data structures and
workloads [10, 16], as we demonstrate in our experiments.

Hence, another direction that systems like H-Store [21] or
Orthrus [36] suggest is to partition the database in an even
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Figure 2: Flexible partitioning via configuration of vir-
tual domains for a 4-socket machine: (a) Thread-sized
with virtual domain per core. (b) NUMA-sized with a
virtual domain per socket. (c) Individual-sized with
two sizes of virtual domains. (d) Isolatedwith separate
virtual domains for hot data structures.

finer-grained manner per hardware thread. While this design
avoids performance degradation due to high contention, it
has several other drawbacks such as its sensitivity to skew
or the fact that more complex workloads cause an increased
coordination overhead between partitions. Consequently,
some systems such as Hekaton [11] even suggest avoiding
partitioning and use a shared-everything approach instead,
to mitigate the negative impacts of partitioning.

2.2 Robust Performance By Configuration
While all the afore-mentioned rigid partitioning strategies
have their sweet spot(s), they can also cause severe perfor-
mance degradation depending on the workload and data
structures in use as we show in our experiments. In this
paper, we thus propose a different route and suggest an ap-
proach enabling a flexible execution strategy that can adapt
all these strategies ranging from thread-sized partitions to
shared-everything by simple reconfiguration. The basic idea
is that based on the mix of data structures and workload
present in a concrete instance of a DBMS, we can provide a
configuration using so-called virtual domains partitioning
hardware resources in an optimal manner.
As shown in Figure 2 c) and d), virtual domains provide

many more configuration options beyond what the rigid
strategies (shared-everything or NUMA/thread-sized shared-
nothing) can provide: First, when splitting the resources of a
machine into virtual domains, not all virtual domains need to
have identical sizes in terms of CPU or memory, but we can
define virtual domains with different sizes to ideally support
a mix of different data structures and workloads within a sin-
gle system. Second, another configuration option provided
by virtual domains is the isolation of hot data structures into
separate virtual domains using a dedicated set of resources
to enable more stable performance.

An important issue is that workloads in DBMS also might
change over time and thus require reconfiguration of a hard-
ware platform into larger or smaller virtual domains. At the

moment, our approach handles this by offline reconfigura-
tion, i.e., all active operations in the system must complete
before a reconfiguration can be applied and the system can
then restart with a new configuration. This offline approach
can be used for reconfiguration if changes in workloads are
known a priory or can be predicted based on reoccurring
patterns (e.g., for Black Friday). In the future, we plan to ex-
tend our approach further to support online reconfiguration
at runtime and thus also support cases where the workload
changes are less predictable.

3 System Overview
In the following, we provide an overview of themain building
blocks of our approach before discussing how to integrate
our approach into a DBMS.

3.1 Asynchronous Tasks & Configurations
The twomain building blocks an application needs to provide
are asynchronous tasks implementing the access operations
on data structures and a configuration that assigns data struc-
tures to optimally sized system partitions (virtual domains).

An asynchronous task is a container for an access method
defined by the application, e.g., an insert or a lookup oper-
ation on a B-Tree. In contrast to operating system threads,
tasks in our approach not only are much more lightweight
but also are data-aware; i.e., a task is only executed inside the
virtual domain where the data structure resides. This notion
of tasks allows us to fully control contention and locality of
access methods by simple means of a configuration.

In addition to tasks, the application can specify a configu-
ration to control contention and locality of access methods
for a given set of data structures. A configuration comprises
two parts: (1) The first part of a configuration defines which
virtual domains are being used to execute a given work-
load. Here the important aspect is the definition of how
many domains are used and how resources are allocated to
each virtual domain independent of the underlying hard-
ware topology. (2) The second part of a configuration defines
how data structure instances are mapped to virtual domains.
Notably, an application may split a data structure into sev-
eral instances and assign them to separate virtual domains
to achieve higher throughput. In Section 5, we discuss an
ILP-based approach to find an optimal configuration that
maximises the overall system throughput given a workload
and a set of data structures. According partitioning strategies
for data structures are implemented by the application (i.e.,
the DBMS [1, 28]) on top of our runtime system. However,
as we show in our experimental evaluation in Section 7 with
our approach, DBMSs become less sensitive to the actual par-
titioning strategy being used since our approach seamlessly
handles severe issues such as locality and contention.
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threads delegate asynchronous tasks to workers in a
virtual domain which reply using futures. A configu-
ration maps clients to virtual domains and workers.

3.2 Runtime System
The main objective of our runtime system is the efficient
execution of tasks given a configuration. For efficient task
execution, the runtime system provides a simple delegation
mechanism based on highly optimised in-memory message
passing. Noticeably, the aim of the runtime system is not to
provide a full-fledged DBMS but to act as a thin virtualisa-
tion layer on top of the hardware providing the foundation
for robust performance of a DBMS built on top. Below, we
discuss the potential direction of how our runtime system
can be integrated into a full DBMS.
Figure 3 presents an overview of our runtime system. A

client thread submits an asynchronous task to be executed
(step 1) and obtains an invocation handle, so-called future,
on the submitted task (step 2.3) to consume the result of the
task execution. Internally, the runtime system identifies the
virtual domain responsible for the referenced data structure
upon the invocation of an asynchronous task (step 2.1). It
then places the task into the corresponding inbox (step 2.2)
returning the future (step 2.3). For efficient message passing
between virtual domains their inbox uses a fixed number of
slots; details follow in Section 6.
The counterpart to the application’s client threads are

worker threads inside a virtual domain. These workers con-
tinuously poll the inbox for new tasks. Once a worker detects
a new task (step 3.1), it executes the task (step 3.2) within the
virtual domain on behalf of a client thread. Upon its comple-
tion, the task places its result in the earlier allocated future
(step 4.1) from which the client retrieves the result (step 4.2).

3.3 Discussion of DBMS Integration
As mentioned before, the main contribution of this paper
is not to provide a full-fledged DBMS. However, we believe
that our delegation-based runtime system can be used for
implementing a DBMS. In fact, we show in our experimental
evaluation that we are able to execute typical OLTP work-
loads by implementing a “light-weight” OLTP engine on top

of our runtime system. In the following, we discuss the main
design choices involved in building an OLTP engine utilising
our runtime system, though.
A first design choice for using our runtime system for

OLTP is the mapping of transaction logic (i.e., the sequence
of reads and writes) to tasks that can be executed by our
runtime. A naïve way for this is to map every individual
read/write operation of a transaction to a separate task to
be submitted to our runtime system by the OLTP engine.
Moreover, our programming model also allows more sophis-
ticated implementations where transactions are chopped into
sub-transactions and then are mapped to tasks as a whole.
Studying the detailed effects of chopping is an interesting
route for future work though. As we show in our experi-
ments in Section 7.3, the naïve mapping already enables an
efficient execution of OLTP.
A second design choice in addition to mapping transac-

tions to tasks, is how tables of a database (and their indexes)
are distributed across virtual domains. For this purpose, we
introduce a configuration procedure in Section 5 that takes
a set of data structures as input (i.e., the tables and indexes
of a database) and compiles a configuration aiming to max-
imise the overall throughput for a given workload. Before
applying this configuration procedure, the DBMS can still
apply conventional partitioning strategies on tables as men-
tioned above and input these table partitions (as well as their
indexes) as data structures to our configuration procedure.

In addition to these two main design aspects (i.e., mapping
transactions to tasks as well as finding optimal configura-
tions for a set of tables), further DBMS components need
to be implemented, such as concurrency control as well as
recovery mechanisms. The design of those components, how-
ever, is orthogonal to the contributions of this paper since
many different schemes can be implemented on top of our
runtime system. For instance, our runtime system allows
DBMS to implement any concurrency control schemes rang-
ing from pessimistic locking to various optimistic schemes.
For our evaluation in Section 7.3, we hence omit these com-
ponents for our “light-weight” OLTP engine as well as for
all baselines (for a fair comparison), i.e., for concurrency
control, we rely on latches to avoid data races but do not
prevent other anomalies (e.g., lost updates). While this al-
lows no direct comparison with other full-fledged DBMSs
incorporating those components, it still allows us to compare
the benefits of our execution scheme for OLTP workloads
compared to more classical OLTP engine designs where data
is partitioned by NUMA regions and transaction managers
directly execute operations without delegation.
Finally, an interesting future aspect when designing an

OLTP engine on top of our runtime system is that the asyn-
chronous executionmodel opens upmany new opportunities
for optimisations. For example, in a classical design of an
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OLTP engine, transaction manager threads execute only a
single transaction at a time, whereas a design building on
our runtime system could rethink this model allowing trans-
action manager threads to execute operations on behalf of
multiple transactions at the same time. That is, when an
operation of one transaction is submitted to our runtime, the
transaction manager could submit operations on behalf of
another transaction instead of blocking until the results of
the first transaction are available. However, analysing these
optimisations is beyond the scope of this paper and needs a
more thorough investigation in our future work.

4 Programming Model
In this paper, we propose a new approach for task-based pro-
gramming. While asynchronous task-based programming
is not new and has also direct support in different program-
ming languages such as Erlang and C# [2, 14, 35, 40, 41] as
a lightweight alternative over threads, we propose a novel
abstraction called asynchronous data-aware tasks.
The essential aspect of a data-aware task is that it only

allows accessing a data structure within a single virtual do-
main using precisely the configured resources of that do-
main. Therefore, a data-aware task must be executed by a
worker thread inside a virtual domain. This concept allows
us to control not only the degree of contention by simply
re-configuring a virtual domain (i.e., by changing the size
of the domain and thus the number of worker threads that
have concurrent access) but also other transient properties
such as cache state and cross NUMA-node traffic which are
bound to the virtual domain as well.

Listing 1: API of an Asynchronous Task.
class Task {

Task(void* dataStructure , Args ... args)

void operator ()( Result& res);

};

In order to implement a data-aware task, the outlined API
of a task (see Listing 1) only requires the first parameter
of the constructor to be the targeted data structure and to
implement the function operator() to return results of the
task using the Result object. Additionally, this abstraction
must also encapsulate all input parameters for the contained
operations. In combination, this simple API enables the run-
time system to route the task to the corresponding virtual
domain based on the referenced data structure.

To show that this programming model can also be used to
implement typical operations of a transaction, the example in
Listing 2 implements a task to insert a record into a (partition
of a) table.While Listing 2 is a simple and illustrative example,
the DBMS could also use tasks to implement more complex
operations involving several data structures within the same
virtual domain or fusion of several operations.

Listing 2: A task to insert a record into a table.
class TaskInsertRecord {

Table* tab; // Pointer to table

Record* rec; // Pointer to buffer of record

TaskInsertRecord(Table* table , Record* record ):

tab(table), rec(record ){};

void operator ()( Result &res){

// Read buffer and insert record

RowID rowID = tab ->insert (*rec);

delete rec; // Delete buffer

res.set(rowID); // Return inserted row id

}

};

5 Robustness by Configuration
The main aspect for configuration is the definition of virtual
domains partitioning the resources of a given hardware plat-
form. In this section, we define the configuration options of
virtual domains before we outline the process of how to find
a configuration for a workload and the set of data structures
comprising the overlaying application.

5.1 Virtual Domains
AVirtual Domain is defined as a set of dedicated logical (SMT)
cores, a worker thread placement policy (i.e., if it allows
thread migration or requires strict pinning to cores), and a
memory allocation policy (e.g., strictly local to individual
workers or interleaved across all workers). In this regard,
we virtualise NUMA-regions which directly represent the
hardware topology into flexibly configurable regions. We
establish these virtualised hardware regions as domains to
control worst-case contention and data locality, thus the
name virtual domains.
In particular, only worker threads of a virtual domain

are allowed to execute tasks on the data structure instances
assigned to that virtual domain, and thus, no side effects can
cross its boundaries. Moreover, since all operations on the
data structure instance are executed as tasks by dedicated
workers of a virtual domain, cache state exclusively resides
in the respective CPUs (cache locality) and only these CPUs
synchronise for cache-coherence on that cache state [20].

Consequently, virtual domains limit the (1) worst-case con-
tention of tasks in a virtual domain to the number of worker
threads and (2) worst-case locality using the placement poli-
cies. Thus, virtual domains provide configurable contention
control and locality which can be flexibly specialised for dis-
tinct data structure instances expose to diverse conditions
through co-existing virtual domains in a single system.

5.2 Configuration Process
Having the means to control contention and locality of dis-
tinct data structure instances through virtual domains, the

Research 18: Main Memory Databases and Modern Hardware  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1655



OLTP 1

2) Domain Sizes in Scenario

Th
ro

ug
hp

ut

Sockets

Read-Only 

Read-Update

Write-Heavy 

21

1) Calibration of Data Structures
4.1) OLTP 1 = Homogeneous

Heterogeneous Homogeneous

Isolated Shared

Single Size?

Crucial?

3) Composition 4) Configuration
4.2) OLTP 2 = Isolated 4.3) HTAP = Shared

OLTP 2

HTAP

Sockets
21

D
at

a 
St

ru
ct

ur
es

Figure 4: Configuration Process: 1. Calibration of domain sizes for the best trade-off between contention and
locality. 2. Optimal domain sizes for different scenarios (OLTP1, OLTP2, HTAP) based on calibration. 3. Composi-
tion of virtual domain as homogeneous or heterogeneous configurations. 4. Resulting configurations for exemplary
scenarios.

configuration process is about finding the individually opti-
mal domain sizes and their composition into a single config-
uration. The overall process of finding a configuration that
defines which virtual domains should be used and how data
structures are mapped into the domains is shown in Figure 4.

The first step of the process (step 1, Fig. 4) is a calibration
phase that gathers performance metrics and quantifies the
performance behaviour of the different data structures in-
volved in a workload. The goal is to find the optimal domain
size for each data structure instance involved in that work-
load individually (step 2, Fig. 4). Subsequently, we start the
composition process (step 3, Fig. 4) which, based on the cali-
bration information, divides the system resources and maps
data structure instances into virtual domains to produce a
configuration (step 4, Fig. 4).
Notably, the configuration does not partition the data

structures themselves. Instead, we expect the application
to partition the data structures utilising application-specific
knowledge (e.g., partitioned indexes in a DBMS) while the
goal of the configuration process is to find an optimal assign-
ment of those partitions to virtual domains. For finding an
optimal configuration for these partitioned data structures,
the application can define constraints which data structure
instances should be mapped into the same virtual domain to
realise co-location of data structure partitions (e.g., an OLTP
DBMS could co-locate data of several tables in one virtual
domain avoiding transactions across virtual domains).
Calibration of Domain Sizes: The calibration phase executes
a given workload under growing domain sizes (i.e., with
an increasing number of threads) for each data structure
instance individually. This calibration typically results in a
common throughput pattern as sketched in step 1 of Fig-
ure 4. The reason is that with increasing domain size the
contention increases and locality is getting worse if domains
span multiple NUMA nodes. As a result of the calibration, we
derive the domain size maximising the overall performance
up to the point after which the slope of the throughput be-
comes negative. As sketched in step 1 of Figure 4, the domain

size providing maximum performance is typically larger for
read-heavy workloads than for write-heavy workloads: that
is 1

2 socket for a write-heavy workload and 2 sockets for a
read-only workload in our example.
Since the calibration phase determines the domain sizes

for individual data structure instances, it ignores side-effects
that might occur when several data structure instances share
a virtual domain. Since sharing a virtual domain means shar-
ing its worker threads, contention on individual data struc-
ture instances may only decrease, hence does not violate
contention control. In contrast to contention, locality gets
worse when multiple data structures share the same domain
since CPU caches are also shared. Our composition process
(discussed next) thus aims to balance the load equally across
all virtual domains such that the negative effect of decreased
locality is equally distributed across domains.
Composition of Domains:We now discuss the second step
of the configuration process deciding the composition of
virtual domains. In this step, we partition the hardware re-
sources and assign data structure instances given from the
application to individual virtual domains. In the following,
we use three typical workloads as examples to explain the
composition approach: (1) OLTP 1 as a typical OLTP scenario
where indexes are accessed with a write-heavy workload; (2)
OLTP 2 as a mixed OLTP scenario where indexes are accessed
with a mix of write-heavy and read-update statements; (3)
HTAP as an HTAP scenario where indexes are accessed with
write-heavy, read-update, and read-only statements.

As shown in step 3 of Figure 4, we distinguish two high-
level cases for the composition: (1) homogeneous and (2)
heterogeneous composition.
The homogeneous composition applies, when the calibra-

tion indicates a single optimal domain size for all data struc-
tures instances (as for OLTP1). Hence, a configuration may
coincide with state of the art, e.g., Shared Nothing parti-
tioning schemes, but it may also yield better-performing
configurations, e.g., half a socket instead of a full socket as
shown with configuration 4.1 in Figure 4 for OLTP1.
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The second case (heterogeneous composition) applies if the
calibration shows the data structure instances require dif-
ferent domain sizes for a particular workload; e.g., in HTAP
workloads some data structures are used in a read-heavy
manner and can use larger domains while others are write-
heavy and thus need smaller domains. In this case, we differ-
entiate the isolated and shared heterogeneous composition:
(1) Isolated is used for crucial data structure instances ne-
cessitating predictable performance (e.g., a lock table where
latency matters). The idea behind isolation is that these data
structure instances do not share a virtual domain with other
data structure instances. Configuration 4.2 in Figure 4 demon-
strates isolation with thread-sized domains for two crucial
indexes (red) in the OLTP2 workload. (2) For all other data
structure instances, we apply the shared heterogeneous case
composing domains of different sizes which can be shared by
multiple data structure instances as shown in configuration
4.3 (Figure 4) for the exemplary HTAP workload.

For the shared heterogeneous composition, we formulate
the problem as a variation of a General Assignment Prob-
lem with Minimal Quantities (GAP-MQ) [23] in form of an
Integer Linear Program (ILP). Intuitively, the ILP should ful-
fil the following goals: (1) Most importantly, data structure
instances should reside in domains of at most the calibrated
optimal domain size. (2) The number of domains should be
minimised because a higher number of domains increases
the sensitivity to skew. (3) The load between all domains
should be balanced.

For the input of our ILP, we introduce the data structure in-
stances of an application as 𝑛 data structure instances 𝑖 ∈ 𝐼 =

{1, ..., 𝑛} with calibrated optimal domain sizes 𝑠𝑖 ∈ 𝑆 ⊆ N+.
Further, we specify the number of available worker threads
in the system as𝑤 ∈ N+. Then we define the multiset 𝐵 as
all possible domain sizes comprising any potential configu-
ration within the limits of the given workers𝑤 where each
domain size 𝑠 ∈ 𝑆 appears ⌊𝑤/𝑠⌋ times (multiplicity of 𝑠). For
example, assuming 192 workers as a system size (𝑤 = 192)
for our OLTP2 scenario in Figure 4 and optimal domain sizes
of 𝑆 = {24, 48} that we identified by calibration, the multiset
is 𝐵 = {241, 242, ..., 248, 489, 4810, 4811, 4812}𝑏 . Based on 𝐵, the
domains to choose for a configuration are𝑑 ∈ 𝐷 = {1, ..., |𝐵 |}
with domain size 𝑏𝑑 ∈ 𝐵, where binary variables 𝑦𝑑 indicate
the choice of 𝑑 . In our OLTP2 scenario, this could be the
choice 𝑦1, 𝑦2, 𝑦9, 𝑦10, 𝑦11 = 1, i.e., 2 domains of size 24 and 3
domains of size 48. Subsequently, the binary variables 𝑥𝑖,𝑑
denote the assignment of a data structure instance 𝑖 to a
domain 𝑑 in the resulting configuration.

For load balancing, we assign an abstract expected load of
an instance as 𝑙𝑖 ∈ R+ as well as a minimum and maximum
load of a domain as 𝑞𝑑 and 𝑟𝑑 ∈ R+, where the minimum load
avoids domains without any load while the maximum load
avoids overloading domains. Finally, we incentivise choosing

larger domains by assigning the profit in proportion to the
domain size as 𝑝𝑑 = 𝑃𝑏𝑑 with a large P, s.t. 𝑝1 ≪ ... ≪ 𝑝 |𝐷 | .

max
∑

𝑑∈𝐷 𝑝𝑑𝑦𝑑 (1)
s.t. 𝑛𝑦𝑑 −∑

𝑖∈𝐼 𝑥𝑖,𝑑 ≤ 𝑛 − 1, ∀𝑑 ∈ 𝐷 (2)∑
𝑑∈𝐷 𝑥𝑖,𝑑 = 1, ∀𝑖 ∈ 𝐼 (3)
𝑏𝑑𝑥𝑖,𝑑 ≤ 𝑠𝑖 , ∀𝑖 ∈ 𝐼 ,∀𝑑 ∈ 𝐷 (4)∑

𝑑∈𝐷 𝑏𝑑𝑦𝑑 ≤ 𝑤 (5)
𝑞𝑑𝑦𝑑 ≤ ∑

𝑖∈𝐼 𝑙𝑖𝑥𝑖,𝑑 ≤ 𝑟𝑑 , ∀𝑑 ∈ 𝐷 (6)
𝑥𝑖,𝑑 , 𝑦𝑑 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 ,∀𝑑 ∈ 𝐷 (7)

Equations 1-7 formulate the ILP for our configuration prob-
lem based on the GAP-MQ problem. The objective function
formalises an optimal configuration as a choice 𝑦𝑑 of do-
mains 𝑑 maximising the profit through large domain sizes
and consequently a minimal number of domains, where the
constraint in Equation 2 connects that choice of a domain
to the assignment of data structures 𝑥𝑖,𝑑 . The constraint in
Equation 3 requires the assignment of each instance to pre-
cisely one domain. Equation 4 constrains the assignment of
an instance to domains of at most the calibrated optimal do-
main size to satisfy the calibrated worst-case contention and
locality while Equation 5 restricts the choice of domains to
the available workers. Finally, in Equation 6, we constrain the
assignment of instances to domains, such that the sum of the
load of a domain is within the required bounds if the domain
is chosen. Solving this ILP determines 𝑦𝑑 and 𝑥𝑖,𝑑 establish-
ing a configuration of domains with assigned instances for
our runtime system. Additionally, our ILP can simply reflect
application-specific requirements on the configuration by
additional constraints. For example, further constraints can
incorporate co-location of specific data structure instances
to place secondary indexes into the same domain.

6 Runtime System
Given a configuration, our runtime system realises efficient
execution of data-aware asynchronous tasks on generic data
structures in freely configurable virtual domains via delega-
tion and futures.
Efficient and Flexible Delegation: In order to achieve robust
performance with an optimal configuration via delegation,
the communication between clients and workers must be as
efficient as possible, especially it should not cause contention
which we seek to reduce through optimal configuration.

Therefore, we implement the delegation as efficient in-
memory message passing based on fast, fly-weight delega-
tion (FFWD) [37]. At the core of FFWD is a message pass-
ing scheme minimising cache coherence traffic for synchro-
nous communication between multiple clients and a single
worker. It enables highly efficient communication outper-
forming common concurrent data structures with shared
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Figure 5: Flexible delegation through an inbox con-
structed from message buffers of workers in which
clients obtain ownership of slots (colour coded).

memory synchronisation primitives and latch-free designs,
e.g., queues with NUMA-aware MCS latches and latch-free
queues. In detail, FFWD allocates a contiguous message
buffer for the worker in which each client has a dedicated
slot for a message at the position of the client id. Then, FFWD
minimises cache coherence traffic through efficient detection
of newmessages via embedded toggle bits and batching of re-
sponses for up to 15 clients. Furthermore, their design simply
includes common optimisations, e.g., NUMA-aware mem-
ory allocation as well as memory alignment to 128 bytes to
prevent false sharing of adjacent cache lines [20] and incor-
porates optimisations not generally possible for concurrent
data structures, i.e., complete absence of atomic instructions
and memory ordering fences.
Beyond the original FFWD, we extend the messaging

scheme to reach the necessary flexibility for our approach
of optimal configuration. Specifically, we break the strong
relation between a client and a worker in FFWD while main-
taining the same optimisations. Figure 5 outlines how we
establish an inbox for a virtual domain from which clients
obtain ownership of slots to delegate to and physically con-
struct this inbox out of the message buffers of the configured
workers. Consequently, clients are only loosely coupled with
(workers in) virtual domains enabling any number of clients
to be transparently serviced by the independently configured
number of workers within a virtual domain (limited by the
total number of slots of the inbox). Additionally, we enable
asynchronous delegation of several tasks to virtual domains
via futures by handling responses to delegated tasks and
returning ownership of a slot after returning the results.
As optimisation for virtual domains spanning multiple

NUMA nodes (e.g., two sockets), the runtime system assigns
ownership of a slot in the inbox, such that the backingworker
has minimal NUMA distance to the requesting client. For
example in Figure 5, the purple client on the left gets assigned
ownership of the purple slots from message buffers on the
left from the inbox of a virtual domain spanning two sockets

and vice versa for the orange client on the right. Thereby
both clients communicate locally with workers instead of
communicating through an interconnect.
Notably, the implementation of delegation across virtual

domains puts little requirements on the underlying hard-
ware platform. For example, delegation can be implemented
in NUMA systems with access to shared memory (which
is our main focus in this paper) but can also be used in
distributed systems with RDMA or future systems like Gen-
Z [17]), which we aim to study in future work.
Optimised Delegation Mode(s):On top of the efficient com-

munication scheme, we introduce enhanced delegation that
allows clients to asynchronously delegate numerous tasks
and only eventually request their results which we utilise to
optimise task delegation for bursting behaviour.

We enable the client to announce bursting delegation for a
specific data structure instance to the runtime system. Then,
the runtime system pre-allocates futures and slots from the
inbox of the according virtual domain for a maximum num-
ber of outstanding tasks (burst size) specified by the client,
thereby we clear the critical path from resource allocation
and minimise the overhead for delegation in bursts. More-
over, we provide a delegation mode to maximise throughput
based on these bursts. The runtime system can manage a
burst for the client in a way that the client can continuously
delegate independent tasks and only needs to process the
result of the oldest tasks when the burst is completely filled.
This delegation mode maximises overlap of pending tasks
in addition to minimising the overhead and consequently
maximises delegation throughput for the client to the speci-
fied data structure instance. Additionally, further extended
delegation modes are possible to cover other application-
specific delegation patterns. With bulk bursting, for example,
multiple tasks are delegated under a single synchronisation
phase. This mode optimises delegation for a fixed number
(i.e., bulk) of parallel operations within a transaction requir-
ing a common synchronisation point.

7 Experimental Evaluation
In the following experiments, we evaluate the efficiency of
our approach and illustrate its robust performance by re-
configuration for a range of data structures and workloads.
Baselines and Setup:As baselines, we consider a wide range

of fixed partitioning strategies from naïve shared everything
to extreme shared nothing: (1) SE and SE-NUMA represent
shared everything strategies, where all threads access all
data structure instances. The former is a naïve setting which
solely relies on the OS for data placement of its partitioned
data structures into NUMA regions. Whereas the latter (SE-
NUMA) setting is NUMA-aware, but only for memory al-
locations of the individual partitions. However, all threads
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are still allowed to operate on all the partitions, i.e., exe-
cution is not NUMA-aware. (2) SN-NUMA and SN-Thread
correspond to state of the art shared nothing strategies [31],
which we apply to the configuration of data structures in
our framework. SN-NUMA represents NUMA-aware system
partitioning that explicitly dedicates data structures to spe-
cific NUMA nodes. SN-Thread is an extreme shared nothing
strategy, with thread-granular partitioning, where a single
thread is exclusively accessing a partition of a data structure.

We compare all these baselines against our approach (Opt.
Configured), where we use an optimal partitioning strategy
that results from applying our configuration process in Sec-
tion 5. In all our experiments, we use the bursted execution
modewith a burst size of 14 for our approach.While the burst
size is a configuration parameter, this size has shown on av-
erage the best performance across all experiments with only
a minimal increase in latency. For both shared everything
strategies bursting cannot be applied since clients directly
access data structure instances.
Hardware:We conduct our experiments on an HPE MC990

X system with two hardware partitions each containing four
Intel Xeon E7-8890 v4 CPU (24 cores, 60MB L3), i.e., 192 physi-
cal cores and 384 logical (SMT) cores (with HyperThreading).
A NUMAlink controller combines these hardware partitions
to a single, cache-coherent NUMA system [15]. The result-
ing system has four levels of NUMA, for which we measure
memory latencies of 114, 217, 265, and 487ns. In order to
assess the robustness for different hardware architectures,
we use this system to simulate different architectures by
restricting the number of sockets ranging from small-scale
NUMA systems connected via one hop to large-scale NUMA
systems that need to cross the NUMAlink.

7.1 Exp. 1: Efficiency for Various Data
Structures and Workloads

In the first experiment we show the ability of our approach
to enable robust performance across a wide range of data
structures and workloads.
Workloads and Metrics: To assess the performance of differ-
ent data structures, we use YCSB [8]. We use workloads A
(Read-Update 50/50), C (Read-Only), and D (Read-Insert 95/5)
of YCSB. These workloads allow us to investigate the per-
formance of a data structure with increasing contention due
to the varying amount of modifications (inserts or updates).
We changed the distribution of workload D from Latest to
Zipfian to keep the distribution of records and operations
identical across all three workloads for direct comparison.
Moreover, we use records of 64-bit integer keys and values,
which potentially allow more caching but also may cause
higher contention. This allows us to evaluate complex effects
of locality and contention in both software and hardware.

Table 1: Data structures employed in experiments
with specifics about their synchronisation scheme.

Data structure Synchronisation scheme

STX B-Tree [3] none by default, modified: atomic
load/store + global lock for inserts

FP-Tree [27] HTM + global lock for fallback
Open BW-Tree [42] Copy-On-Write + atomic CAS
Hash Map [39] Fine-grained locking + spin lock

Table 2: Optimal size (no. of workers) of virtual do-
mains for data structures and workloads.

Workload Read-Only Read-Update Read-Insert

B-Tree 48 24 24
FP-Tree 48 24 24
BW-Tree 48 48 48
Hash Map 1 1 1

We define the number of records as ten times the cumu-
lative last level cache size of all sockets in the hardware
mentioned before resulting in 314 M records. We generate
the complete workload (records and operations) through the
official Java implementation [4, 8, 19], which we then simply
replay using our C++ based prototypes. For each experiment,
we execute 2M key/value-operations per client thread.

Experimental measurements are presented as the median
out of seven executions. We assess the reliability of our mea-
surements in terms of Coefficient of Variation (CV) (ratio
of standard deviation to mean) and consider a CV ≤ 5% as
reliable. Since all our measurements fit this reliability re-
quirement, we do not present error bars in our plots.
Data Structures: In all experiments, we use a set of data struc-
tures commonly used for indexing in main-memory DBMS
with different synchronisation schemes, listed in Table 11.

In the following, we evaluate the performance using an
optimal configuration for each of the before-mentioned data
structures and workload and compare it to rigid approaches
ranging from Shared Everything to fine-granular Shared
Nothing configurations. The overview of data structures and
workloads we used in this experiment is shown Table 2.

7.1.1 Exp. 1a - Performance for Various Data Structures We
begin our evaluation by applying the optimal configuration
as described in Section 5 to the largest system size (i.e., a
machine with 8 sockets) and investigate the throughput of
the index data structures under all workloads. Figure 6 shows,
1During our experiments, we discovered skew in the hash of the Hash Map
and extended it with an additional XOR of the upper half of the key with
the lower half resulting in a more even occupation of hash buckets, e.g.,
standard deviation of bucket size 1.2 instead of 4.7.
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Figure 6: Performance of our approach across a range of YCSB workloads and data structures on largest system
size (8 sockets) through individually optimal configuration. Baselines are rigid partitioning schemes.

0 48 96 14
4

19
2

24
0

28
8

33
6

38
40

100

200

Threads

M
O
p/
s

FP-Tree

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

Threads

BW-Tree

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

Threads

Hash Map

0 48 96 14
4

19
2

24
0

28
8

33
6

38
4

Threads

B-Tree
Opt. Configured SN-NUMA SN-Thread SE-NUMA SE

Figure 7: Throughput of read-updateworkload for var-
ious system sizes from 1 - 8 sockets (each 48 threads).

that Opt. Configured reaches the best throughput for all data
structures under various workloads ranging from read- to
write-heavy. Moreover, we see that there is no single rigid
approach that dominates all other rigid approaches under
all workloads and data structures, e.g., SN-Thread performs
well with Hash Map but significantly worse with FP-Tree and
BW-Tree whereas for SN-NUMA the opposite is the case.
Insight: Configuration of individually optimal domain

sizes yields robust (best or close to best) throughput for any
of the evaluated index data structures and workloads.

7.1.2 Exp. 1b - Robust Performance for Various System Sizes
In the following experiment, we examine the performance of
our approach on different system sizes; i.e., by varying the
system size from 1 up to 8 sockets of the machine outlined
in the beginning of this section. We illustrate the resulting
number of virtual domains used across different system sizes
with alternatingwhite and grey shadings in the plots, e.g., the
first shading represents the first virtual domain, the second
shading represents the second virtual domains.
Read-Update Workloads: For this experiment, we first asses

the effect of configuration on different system sizes with an
equal mix of reads and updates. The updates are in-place
modifications to index records, which do not cause any main-
tenance, such as node splits in a tree. Thus, these are of high
locality, providing an opportunity for low contented, efficient
synchronisation. Still, the high update rate puts pressure on
synchronisation and causes physical contention.

Figure 7 depicts the throughput of the read-update work-
load for the same 4 index data structures as in the previous
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Figure 8: Hardware metrics indicating contention and
cache locality of FP-Tree on read-upadte workload.

experiment. Our Opt. Configured provides robust scalability
on the read-update workload for all the data structures, i.e.,
best or close to best throughput at each scale. The Shared
Everything settings scale only with the B-Tree and BW-Tree,
whereas Shared Nothing settings at most perform as good as
our Opt. Configured.

While providing robust performance across all data struc-
tures, with FP-Tree Opt. Configured even improves perfor-
mance by 560x over SE, 1.8x over SN-NUMA, and 1.4x over
SN-Thread at 384 threads. Specifically, both Shared Every-
thing settings stagnate after 24 threads and significantly drop
in performance for larger system sizes, i.e., performance col-
lapses by over 90% between 1 and 2 sockets. Instead, our
Opt. Configured setting scales best because it retains the best
scale-up performance of 24 threads in virtual domains and
efficiently scales these to the largest system size. The other
settings either insufficiently limit contention for HTM to
perform well or incur much overhead, as detailed below.
For better understanding of the root causes for the per-

formance degradation and the lack of scalability, we analyse
the abort rate of HTM transactions and cache locality pre-
sented in Figure 8. The performance of Shared Everything (SE)
settings and SN-NUMA setting is tied to the sensitivity of
HTM to high conflict ratios (i.e., workload with 50% updates)
and length of HTM transactions, amplified by longer NUMA
distances, as investigated in [5]. The consequence is high
abort ratios of HTM transactions inflicting the substantial
performance degradation for these three settings. In contrast,
SN-Thread does not cause any aborts, but increased L2 (and
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Figure 9: Communication volume on interconnects be-
tween sockets for BW-Tree on read-update workload.

L3) cache misses instead, thus indicating overhead of its ex-
treme partitioning which inflates competition between the
data structure and the delegation procedure for the private
L2 cache of the responsible CPU core. Finally, Opt. Config-
ured keeps the abort ratio and cache misses low, such that it
performs well for the contended read-update workload. This
confirms the benefits of our apt configuration with adequate
contention management yet minimal overhead.

In the contrary to FP-Tree, BW-Tree manages to scale with
the SE settings due to its conflict resistant Copy-On-Write
(COW) synchronisation scheme but the performance of Opt.
Configured is superior at larger scales, i.e., up to 1.9x. Figure 9
shows that the COW synchronisation scheme induces high
communication overhead on the interconnects of up to 5 TB.
Here, our the efficient in-memory messaging pays off with
about 5x lower communication volume for Opt. Configured
and SN-NUMA as well as 2.5x less for SN-Thread.

The Hash Map exhibits a behaviour similar to the FP-Tree
under SE. For the smallest deployments up to a single socket,
SE provides high performance. However, for larger deploy-
ments the performance of SE collapses similar to the FP-Tree.
Our profiling analysis of the Hash Map indicates that the
bottleneck is highly contended synchronisation. This high
contention also explains the mediocre performance of SN-
NUMA, whose partitioning per NUMA region insufficiently
controls contention. Therefore, SN-Thread and the Opt. Con-
figured provide robust performance for the Hash Map when
scaling to larger deployments. This highlights the benefit of
our configurable approach, which allows us to partition data
structures into optimally sized domains: for the Hash Map,
our approach uses many small domains similar to SN-Thread,
while for the other data structures before (FP-Tree, BW-Tree)
we use a configuration that is closer to the SN-NUMA.

Finally, for B-Tree Opt. Configured performs as good as the
NUMA-partitioned strategy. However, we use synchronisa-
tion with just atomic operations on the record level since
the B-Tree itself does not include any synchronisation. This
synchronisation is unfair as it does not protect modifications
of the structure of the B-Tree. Hence, this mainly serves as
an upper bound for possible performance with the simplest
synchronisation that we could achieve with all strategies.

Insight: Optimal configuration establishes robust scala-
bility for indexes under high contention. In contrast, both
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Figure 10: Throughput of read-only workload for var-
ious system sizes from 1 - 8 sockets (each 48 threads).

Shared Everything settings suffer steep performance cliffs be-
yond one socket already and the Shared Nothing approaches
scale well just for some indexes at larger scale. Only our
configurable approach (Opt. Configured) handles contention
effectively for all data structures providing locality at differ-
ent system scales.
Read-Only Workloads:Next, we show the effect of config-
uration on a read-only workload (YCSB C) for the same
set of data structures and system sizes. This workload is
favourable for a Shared Everything strategy, as there is little
to no contention and maximum opportunity for high cache
utilisation. Therefore, we expect the benefits of our approach
over Shared Everything to be limited to the better locality in
case of memory accesses or remaining synchronisation, e.g.,
reader side of latches.
Figure 10 presents the experimental results. For FP-Tree

the SE as well as SN-Thread settings scale only up to 96
threads (2 sockets), after which their throughput stagnates
and SE-NUMA follows stagnating only after 4 socket. In con-
trast,Opt. Configured and SN-NUMAmanage to scale linearly
up to 8 sockets with a maximal throughput improvement
of 3.2x over SE. Only our approach (and SN-NUMA) pro-
vides efficient execution of access methods even for large
deployments. Moreover, BW-Tree and B-Tree present similar
behaviour to FP-Tree, only that BW-Tree is slightly slower
and B-Tree is faster due to their differing synchronisation.

The data structure Hash Map performs well only on a sin-
gle socket with SE, whereas Opt. Configured enables robust
performance of Hash Map reaching 2.3x higher throughput
than SE at 8 sockets. This improvement results from a bot-
tleneck in the general-purpose implementation of the Hash
Map rooted in the reader coordination of the reader-writer
mutex for synchronisation on the hash buckets. The locality
within our virtual domains optimises the execution of the
atomic increment to register readers on the mutex.

Insight: For read-only workloads where contention is not
as prevalent as for the read-update workload before, our ap-
proach (Opt. Configured) shows competitive performance
as well as low overhead for all index structures. Most im-
portantly, Opt. Configured again is the only approach that

Research 18: Main Memory Databases and Modern Hardware  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

1661



16 32 64 128 256 512 1024

10

100

Indexes

M
O
p/
s

FP-Tree

16 32 64 128 256 512 1024
Indexes

Hash Map
Opt. Configured SN-NUMA SN-Thread SE-NUMA SE

Figure 11: Agg. throughput for increasing no. of in-
dexes (i.e., application size) for read-update workload.

can provide robust performance for all data structures when
scaling out: while Opt. Configured performs on par with SN-
NUMA offering the best performance for the 3 tree-based
data structures, Opt. Configured employs smaller domain
sizes for the Hash Map, and thus behaves more like SN-
Thread, which is best performing in this case.

7.1.3 Exp. 1c - Robustness for Different Application Sizes In
the following experiment, we extend the perspective of ro-
bustness by application size using an increasing number of
index instances. As the system is under full load even with
a single index instance already, there cannot be major im-
provement of throughput when increasing the number of
index instances. On the contrary, we expect this experiment
to expose bottlenecks, as it may amplify overheads or im-
pact important performance factors such as cache locality
or contention inherent in our framework.
We setup this experiment as previously but increase the

number of indexes by separating the prior indexes into smaller
indexes (16 - 1024) with the identical total data volume. More-
over, we configure our framework with the same number of
optimally sized virtual domains, i.e., 16 domains of size 24
threads, but additionally now instances share domains, e.g.,
for a total of 1024 indexes 64 instances share one domain.
Figure 11 presents stable throughput under increasing

number of indexes for most settings with both index types.
Exceptions are on FP-Tree a minor positive trend for both
shared everything settings ( SE: 1.4x, SE-NUMA: 1.3x) and
degrading of SN-Thread by up to 50% beyond 256 indexes.
Importantly, the individual configuration of indexes within
our framework (Opt. Configured) is stable and provides the
best throughput for all numbers of indexes.

Insight: The benefits of configuration within our frame-
work persists for large numbers of indexes.

7.2 Exp. 2: Cost-Benefit Breakdown of
Configurability

Having demonstrated the potential of configurability in Sec-
tion 7.1, we now detail its associated overhead. Indeed, our
runtime system, which delegates tasks to virtual domains,
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Figure 12: Execution cost breakdown into active exe-
cution cycles vs. stall cycles per operation for system
sizes 2 vs. 8 sockets with read-update workload.

causes computational overhead in addition to baselineswhich
directly execute the access methods. However, as we show
in the following, this overhead is negligible even for small
system sizes and provides significant benefits for robust per-
formance, especially when scaling to larger deployments.
Workload and Baselines: In this experiment, we use the YCSB

Workload A (Read-Update) from the previous experiment to
show the overhead and benefits of workloads with a mix of
operations that is common for OLTP workloads. Moreover,
we run this experiment on a small system size (2 sockets) and
the largest system size (8 sockets) to show the cost break-
down for small versus larger systems as mentioned before.
For each system, we compare the same data structures and
baselines as in Section 7.1.
Performance Results: Figure 12 shows the average cost for
one operation (read/update) in CPU cycles per operation as
stacked bars for the different data structures and system
sizes. The cost is broken down into the main categories of the
Top-down Microarchitecture Analysis Method (TMAM) [20]
commonly used to guide performance optimisation [38] (e.g.,
by Intel VTune). Based on TMAM, we distinguish active
execution cycles (solid part of bars) and wasted execution
time (striped parts of bars), i.e., stalls in the Back-End of
the CPU (mainly memory accesses), in the Front-End (e.g.,
instruction decoding), and stalls due to bad speculation (e.g.,
branch misprediction). Notably, in this representation, lower
cost means better throughput per thread.
Again, in this experiment, we can observe robust perfor-

mance (i.e., lowest cost or close to lowest cost) for our ap-
proach (Opt. Configured) compared to the baselines. That is,
as expected for the small system size (2 sockets), our runtime
system has comparable performance to the shared-nothing
and shared-everything baselines, while we achieve signifi-
cant benefits for larger system sizes, especially for the FP-tree.
Moreover, as observed before, Opt. Configured achieves its
robustness by configurability: it resembles the execution cost
of SN-NUMA or SN-Thread (which are the best performing)
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while its distinct configuration of half a socket (i.e., in be-
tween the partition sizes of those other approaches) even
achieves better cost for FP-Tree.
Finally, when observing cost in detail, we can confirm

our runtime system adds negligible active execution over-
head in comparison to the SE-baselines, which can be mainly
attributed to the additional instructions for delegation on
top of the bare data structure operations. However, com-
paring the amount of stall cycles, our runtime efficiently
executes these additional instructions (comparable Front-
End and Speculation Stalls) and effectively decreases overall
memory (Back-End) stalls below the stalls of the bare data
structure operations (i.e., improves locality and contention),
which benefits overall cost per operation.

Insight:Our cost-benefit analysis shows that our approach
(Opt. Configured) has highest active cycles stemming from
the additional overhead of our runtime system. However, im-
portantly, this allows our approach to reduce stalls efficiently.
As a result, our approach has the overall lowest execution
cost (active cycles + stalls), thus can provide the highest per-
formance across different data structures and system sizes.

7.3 Exp. 3: Efficiency for OLTP Workloads
In the last experiment we show that our approach also pro-
vides performance benefits beyond single data structures
and supports the efficient execution of more complex OLTP
workloads. For this purpose, we implement a light-weight
OLTP engine on top of our runtime system and observe
the performance of transactions of TPC-C – a typical OLTP
benchmark.
Light-weight OLTP Engine and Baseline: The light-weight
OLTP engine provides basic functionality for partitioning
tables and executing transactions as tasks: (1) For partition-
ing, our light-weight OLTP engine supports a typical hash-
partitioning scheme. In particular, it partitions tables includ-
ing their primary and secondary indexes that are then config-
ured as composite data structure by our configuration proce-
dure from Section 5 to place tables and their indexes jointly
in the same virtual domains. As data structures for tables and
indexes, we have chosen the FP-Tree and the BW-Tree from
the previous experiments since both are specifically designed
for supporting OLTP workloads in main memory DBMS, no-
tably they use very different synchronisation mechanisms
(cf. Table 1). (2) For executing transactions as task, our OLTP
engine uses a scheme where each individual statement of
a transaction is mapped to a task (i.e., we do not do any
chopping which could further improve the performance).
Finally, we omit higher order components for recovery and
concurrency control. As already discussed in Section 3, all
these components are orthogonal and different schemes can
be implemented on top of our runtime system. Analysing
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Figure 13: Throughput of TPC-C New-Order and Pay-
ment with 8 warehouses for increasing system size
with 1% remote transactions (left) and for increasing
remote transactions at largest system size (right).

the effects of these different schemes (e.g., for concurrency),
however, is beyond the scope of this paper.
As baseline, we compare our light-weight OLTP engine

that is based on our runtime system with an OLTP engine
based on the design of [31] that uses a NUMA-aware shared-
nothing design where transactions are directly executed by
transaction managers (i.e., not by delegating tasks to our
runtime system). To allow a fair comparison, we also omit
concurrency control and recovery in the baseline.
OLTPWorkload: In order to compare our light-weight OLTP

engine with the shared-nothing baseline, we use the TPC-C
benchmark. For this experiment, we implemented the New-
Order and Payment TPC-C transactions as tasks, which rep-
resent 88% of the workload. As data, we generate a TPC-C
database with 8 warehouses (i.e., one for each NUMA-region
considered to be favourable for the shared-nothing baseline
used in this experiment). We partition the database across
different system sizes by warehouse IDs ranging from 1 to
8 NUMA regions (i.e., system sizes from 48 to 384 threads).
Moreover, we vary the fraction of New-Order and Payment
transactions that need to access remote warehouses from 0%
to 75% to simulate workloads that range from perfect locality
to almost no locality. Finally, we configure tables into virtual
domains with the procedure outlined in Section 5.
Performance Results: The results of this experiment are shown

in Figure 13. Observing the TPC-C throughput for increasing
system size on the left of Figure 13 reveals that using the
FP-Tree results in brittle performance in the NUMA-aware
system, i.e., degrading from the best throughput at the small-
est system size (48 threads) to the worst throughput for larger
system sizes (≥ 96 threads), which is in line with our results
in Section 7.1. Whereas, the BW-Tree is more robust across
different system sizes in the NUMA-aware system design.
Nevertheless, the OLTP-engine based on our runtime system
increases the overall performance for both indexes (the FP-
and BW-tree) due to our effective contention management
and efficient communication as observed earlier. Even more
interestingly, our approach in combination with the FP-Tree
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establishes robust performance scaling the throughput of
TPC-C transactions linearly with the system size.

Now, we present the TPC-C throughput at the largest
system size under an increasing proportion of remote trans-
actions on the right of Figure 13. The results indicate the
sensitivity of the two different OLTP engines w.r.t. partition-
ability and locality of OLTP workloads; i.e., commonly OLTP
workloads (especially TPC-C) are partitioned into exclusive
partitions to achieve high throughput on large system sizes
rendering them sensitive to remote transactions. The perfor-
mance of the NUMA-aware system with FP-Tree perfectly
demonstrates this sensitivity to remote transactions drop-
ping from 1.5M txn/s at 0% remote transactions to barely
any throughput at 1%. In contrast, our OLTP engine provides
high throughput regardless the remote transactions, i.e., 1.2
- 1.1M txn/s. Again, BW-Tree improves the robustness of
the NUMA-aware system. Still, in this case, our approach
also enables better throughput for BW-Tree compared to the
NUMA-partitioned baseline since our approach can further
increase locality and reduce contention.

Insight: As we have shown in this experiment, using our
runtime that relies on the configuration of virtual domains
can also provide significant benefits for executing OLTP
workloads. An interesting insight is that opposed to classical
OLTP engines where optimal partitioning is crucial to max-
imise locality, partitioning does not play a significant role
anymore when using our runtime system since delegation
can provide high locality (and thus high throughput) even
for non-partitionable workloads.

8 Related Work
In this paper, we make the case for configuration to achieve
robust performance for a wide range of workloads and a
variety of hardware platforms.

As hardware development advances, a huge body of re-
search proposes solutions for new challenges and reiterates
optimisations on all levels of system design ranging from
synchronisation primitives to data structure designs and all
the way to entirely new DBMS architectures. In response to
increasing core counts and main memory capacity, systems
like H-Store [21] and DORA [29] propose to partition the
database in a fine-grained manner per hardware thread to
avoid contention on data structures, where the latter actually
applies delegation of transactions between worker threads.
Yu et al. [43] give a projection on the arising challenges

when hardware with more than 1000 cores becomes com-
monplace for DBMS. They identify challenges of prior in-
memory DBMS which they say will only be amplified as the
number of cores increases. Since then, many proposals take
different directions on how to adapt DBMS architectures to
hardware with so many cores spread over many sockets. For

example, ERIS [22] takes the DORA approach from multi-
core OLTP to multi-socket OLAP and adds load balancing
between system partitions to address skew in the workload.
Instead, Hekaton [11] suggests to reject partitioning and to
use a shared-everything approach to avoid the negative im-
pacts of partitioning, e.g., skew. Porobic et al. [31] analyse
the effect of hardware topologies with different core and
socket counts on partitioning strategies and conclude that
DBMS must be aware of the underlying hardware.

We propose to decouple the implementation of data struc-
tures (and larger components) from the system architecture,
such that the configuration can adapt to new hardware and
the existing implementations are reused.

Our general approach to adapt to hardware development
follows other systems research. Node Replication [7] devises
an automatic approach to transform any sequential data
structure into a concurrent data structure for large scale
hardware through a combination of shared memory and
distributed computing approaches. They replicate data struc-
tures in a distributed manner across NUMA nodes and apply
flat-combining delegation to share and synchronise a distinct
data structure between workers on a NUMA node. [6] evalu-
ate approaches to combine message passing known from dis-
tributed systems and common shared memory programming
for NUMA-aware systems. They expect benefits from mes-
sage passing in combination with delegation when commu-
nication of data and cache coherence between NUMA node
becomes too expensive, whichwe show is already the case for
index operations on the BW-Tree from two sockets and more
(cf. Figure 9). But they point out that efficient message pass-
ing is crucial for delegation. To this end, FFWD [37] devises
a delegation scheme with minimal cache coherence transac-
tions between participating CPU cores, outperforming prior
delegation schemes including flat-combining [12, 26], shared
memory synchronisation primitives [9, 13], and latch-free al-
gorithms. We extend FFWDwith broader flexibility to enable
efficient configuration and robust performance.

9 Conclusion
In this paper, we proposed a new approach for achieving ro-
bust performance of fundamental data structures. The main
idea is to strictly separate the data structure design from the
actual strategies how access operations are executed and to
adjust the execution strategies by means of a configuration.
In our evaluation, we demonstrated that reconfiguration es-
tablishes robust performance across diverse workloads and
hardware sizes. While we believe that our abstractions (tasks
and configurations) allow an efficient adaption of existing
DBMS to make use of our approach, showing this would be
beyond the scope of this paper though and is an interesting
avenue of future work.
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