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Abstract—Near-Data Processing is a promising approach to
overcome the limitations of slow I/O interfaces in the quest
to analyze the ever-growing amount of data stored in database
systems. Next to CPUs, FPGAs will play an important role for
the realization of functional units operating close to data stored
in non-volatile memories such as Flash.

It is essential that the NDP-device understands formats and
layouts of the persistent data, to perform operations in-situ. To
this end, carefully optimized format parsers and layout accessors
are needed. However, designing such FPGA-based Near-Data
Processing accelerators requires significant effort and expertise.
To make FPGA-based Near-Data Processing accessible to non-
FPGA experts, we will present a framework for the automatic
generation of FPGA-based accelerators capable of data filtering
and transformation for key-value stores based on simple data-
format specifications.

The evaluation shows that our framework is able to generate
accelerators that are almost identical in performance compared
to the manually optimized designs of prior work, while requiring
little to no FPGA-specific knowledge and additionally providing
improved flexibility and more powerful functionality.

Index Terms—FPGA, Near-Data Processing, Automatic Gen-
eration, Key-Value Store, Database, COSMOS, OpenSSD

I. INTRODUCTION

The rate at which new data is produced and stored every day
has constantly been increasing in recent years, and with the
advent of the internet-of-things (IoT), this trend will continue
in the foreseeable future. A substantial amount of the data
produced every day is stored in database systems, such as
key-value stores (KV-store). Of course, this data is not write-
only: To make sense (and gain value) out of the stored data,
it needs to be analyzed, ever more so now in the golden age
of Big Data and Machine Learning.

Data analytics has been limited by slow I/O interfaces to
the attached storage devices such as non-volatile memory
(NVM). This severely hampered the processing of stored data.
An interesting approach to overcome this limitation is Near-
Data Processing (NDP): Instead of moving huge amounts
of data from storage via the I/O-bottleneck to the CPU for
analysis, which will eventually yield a result typically much
smaller in size than the input data, Near-Data Processing

places the computation much closer to the data. With hardware
vendors being able to economically integrate processing units
with non-volatile memories on a single chip or board, Near-
Data Processing can help to overcome the limitations on data
analytics imposed by slow I/O interfaces.

One example for a Near-Data Processing system for key-
value stores was presented by Vinçon et al. in [1], [2]:
By combining what they refer to as Native Computational
Storage, which removes unnecessary abstraction layers and
unifies information about data format and layout in a single
layer with NDP capabilities, they were able to demonstrate
speedups of up-to factor 2.7x for real-world data analysis.
For their approach, they did not only use standard CPUs,
but also leveraged the computational power and parallelism of
FPGAs. However, the FPGA-based NDP processing elements
(PEs) in their work were hand-crafted, requiring significant
development effort and expertise.

In addition, not only do data storage formats evolve over
time, but the specific data representation requirements in the
actual NDP-operations also tend to change over time. Hand-
crafting highly optimized NDP-accelerators becomes imprac-
tical in such scenarios, which may include data analytics on
big data sets, or evolving feature vectors in machine learning.

In this work, based on the nKV architecture [1], we present a
framework to automatically generate FPGA-based NDP accel-
erators from data format specifications. The generated PEs are
able to filter and transform data from key-value stores, based
on user-specified filter predicates and transformation rules. The
PEs are integrated in a system-on-chip (SoC) architecture for
the Cosmos+ OpenSSD platform [3].

In the evaluation, we compare the performance of the
automatically generated accelerators with hand-crafted designs
and assess the impact of the data format on the hardware
footprint of the generated accelerators.

II. MOTIVATION

In general, the development of hardware accelerators for
specific applications is a tedious task that requires knowledge



of the application domain, as well as expertise in acceler-
ator development and device specifics. Typically, using the
database specification, a corresponding hardware accelerator
will be implemented using some form of Hardware Descrip-
tion Language (HDL) such as Verilog or VHDL. As soon as
the accelerator design is finished, a suitable software interface
has to be implemented. Depending on the target platform, this
interface may vary. For the OpenSSD Cosmos+, the HW/SW
interface has to be developed as device firmware, which is
executed on the ARM-cores of the device. Since the architec-
ture and the accelerator design impact how the accelerator is
controlled, it is necessary to consider both when developing
the software interface. As soon as the software interface is
implemented, all of the components can be integrated. In this
stage, the firmware is adapted to use the software interface to
access the accelerator. Lastly, the hardware design (including
the accelerator) has to be synthesized into a bitstream, which
is used to program the FPGA-portion of the Zynq-7000 SoC
on the Cosmos+. After compilation and synthesis has finished,
the accelerated system can be deployed and used.

A major problem of this toolflow is the required cross-
domain knowledge. Especially the PE development requires
experience with hardware development, as well as a good
knowledge of the target platform. Additionally, HW-SW de-
pendencies exist, which makes it impractical to develop the
software interface without a finalized accelerator design.

In this work, we aim to implement a framework which
allows the automatic generation of the accelerator design by
composing fixed architecture templates. These templates allow
for the concurrent generation of the software interface. The
merit of this approach is twofold: First, hardware development
expertise is no longer required. The proposed framework is
usable without any knowledge about hardware development
or HDLs. Instead, the required information is provided to the
tools in a simple C-style syntax. Additionally, the dependency
between the accelerator design and the interface development
is removed, allowing an overall faster development cycle.

III. NEAR-DATA PROCESSING BACKGROUND

A. Background: Key-Value Stores

In this work, we focus on Near-Data Processing for wide-
spread, high-performance Key-Value (KV) Stores, in particular
RocksDB [4]. In order to provide querying capabilities in
combination with high sustained insert and update rates,
modern KV-Stores often use out-of-place update approaches
such as Log-Structured Merge-Trees (LSM-Tree) [5].

An LSM-tree employs multiple components C0...Ck. All
insertions and updates are performed on the first component
C0, typically located in memory. After C0 reaches a defined
size threshold, its content, i.e., the insertions and updates, is
flushed to persistent memory and merged with component C1.
Over time, the merges will gradually move data from C0 to
Ck to ensure a separation of hot and cold data. During each
merge process, outdated key-value pairs are purged and their
space is reclaimed.

RocksDB uses LSM trees in a multi-leveled variant [6].
The component C0 comprises multiple MemTables and is
located in volatile memory, while the remaining components
C1...Ck reside in persistent memory (e.g., Flash). Whereas the
MemTables in C0 are typically implemented using a memory-
efficient structure such as skip-lists, the data is transformed
into the so-called Sorted String Tables (SST) format during
the flush from C0 to the persistent component C1. Each
component C1...Ck in persistent memory comprises multiple
SSTs. Each SST in turn is composed by an index block and a
number of data blocks. The key-value pairs are stored in the
data-blocks in key-sorted order.

During the merge process, as part of the LSM tree al-
gorithm, the SSTs are compacted, i.e., outdated entries are
pruned. Nevertheless, as the compaction process only happens
as part of the merge process, multiple key-value pairs for the
same key can be present on different levels of the LSM tree
hierarchy. For example, a more recent key-value pair k, v′ in
component C2 supersedes a pair k, v in component C5. For
performance, no compaction takes place during the flush from
component C0 to component C1.

Access operations to the key-value store, such as GET or
SCAN require to traverse multiple index blocks, starting at the
MemTables in component C0. Assuming that the key is not
present there, all index blocks of every SST from C1 need
to be traversed (remember that no compaction is performed
during the flush, thus multiple pairs for a key can be present
in C1), followed by traversing a single index block in the
remaining index components C2...Ck. SCAN operations with
a value predicate (e.g., SCAN(0 < V alue < 42)) even
require traversal of the entire data-set.

The NDP PEs generated by our tool-flow operate on SST
files using parallelized NDP operations for faster access.

B. nKV: Near-Data Processing Architecture

The NDP PEs developed in this work is based on the nKV
Near-Data Processing architecture developed by Vinçon et al.
[1]. Their architecture and custom key-value store exploits two
key insights: First, while intermediate layers and abstraction
such as block devices and file systems simplify the architecture
and implementation of key-value stores such as RocksDB, they
also introduce inefficiencies and complicate the implementa-
tion of true near-data processing. For NDP to be effective,
it needs to operate directly on the physical addresses of
the data in the key-value store. Therefore, nKV uses native
computational storage, i.e., the intermediate abstraction layers
along the critical I/O path have been removed and nKV
directly operates on Flash storage, using physical addresses.

Having control over the physical placement of data also
allows nKV to optimize the placement of data. By distributing
data on independent Flash channels and LUNs, nKV facilitates
parallel access and processing of data [1]. Moreover, keeping
the data of different LSM-tree index components separated
on different Flash chips, avoids blocking of the entire bus by
compaction jobs taking place as part of the LSM-tree merge.
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Fig. 1. Comparison of traditional KV-store and the nKV-architecture with
native computational storage and Near-Data Processing.

The second important insight that underlies nKV is the fact
that placing the computation closer to the data can significantly
reduce the amount of data transferred, and consequently speed-
up access. Many KV-store operations, such as the SCAN-
operation on value predicates explained in the previous section,
are very I/O-intensive, requiring much more data to be moved
from storage to the processor than what is required for the
final result of the operation. Using Near-Data Processing, i.e.,
placing the computation much closer to the data, does not
only reduce the I/O complexity of the operations, but also
allows for higher degrees of parallelism, as the device-internal
bandwidth of storage devices (e.g., parallel access to different
Flash channels) is typically much higher than the bandwidth
of the I/O interface to the processor. In a similar fashion, NDP
also achieves much shorter latencies.

In general, KV-Stores employ concrete data formats defined
by either the application on by the database object itself
(e.g. table), when applied as a DBMS storage engine, the
data catalog. The nKV architecture exploits on-device data
access and allows for data format interpretation in-situ. While
information about the layout and format of data is scattered
and encapsulated across multiple abstraction layers in classical
KV-stores, nKV removes these layers and introduce on-device
infrastructure for data format parsers and accessors in both
soft- and hardware. The infrastructure operates on the SST
format and allows interpretation of the data format and data
access without host intervention.

The difference between the nKV architecture, with its native
computational storage and use of NDP, and traditional KV-
store setups, such as RocksDB, can be seen in Fig. 1: While
RocksDB has to retrieve large amounts of data from the
storage through intermediate layers to perform the requested
operation on the host CPU, the nKV architecture can leverage
the full device-internal bandwidth of the Flash and perform the
requested operation on-device, eventually transferring only the
much smaller result set back to the host.

While the prior FPGA-based NDP PEs for nKV were
designed manually, this work will target the existing nKV ar-
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chitecture, and provide an automated tool-flow for generating
FPGA-based hardware accelerators for NDP operations.

IV. NEAR-DATA PROCESSING ACCELERATOR
GENERATION

Our implementation targets the Cosmos+ OpenSSD plat-
form [3], which features a Xilinx Zynq-7000 SoC (XC7Z045).
Additionally, the Cosmos+ offers two kinds of memory: Fast
but volatile DRAM, and slow but persistent Flash memory.

The Cosmos+ baseline architecture enables it to be used
as a “plain” NVMe SSD. To this end, the programmable
logic (PL) of the Zynq SoC is used to implement an NVMe
interface as well as controllers for the the attached Flash
memory. Specifically, the Tiger4 Flash memory controller is
used [3]. This baseline architecture is extended with FPGA-
based NDP processing elements (PEs) in [1], which supports
hardware/software co-execution for NDP in conjunction with
the Zynq ARM cores. While [1] uses manually developed PEs,
in this work we will introduce a way to automatically generate
them from abstract specifications .

When adding FPGA-based PEs, a balance between Flash
parallelism and compute parallelism has to be struck, since
both the Flash memory controllers and the PEs compete for
FPGA resources on the reconfigurable portion of the Zynq-
7000. In this work, we use a single Flash DIMM and two
separate Flash controllers for the Flash memory. The resulting
system architecture is shown in Fig. 2.

To reduce the implementation complexity, the PEs are not
directly coupled to the Flash memory. Instead, the data is first
buffered in DRAM, and the results are also initially collected
in DRAM. While this might seem counter-intuitive, this detour
does not have significant negative performance impact due to
two issues: First, the overall Flash bandwidth achievable using
two Tiger4 controllers is only about 200 MB/s. Second, most
of the data will be accessed multiple times, and thus profits
from being stored in faster DRAM (compared to the relatively
slow Flash memory).

A. NDP Accelerator Architecture Template

While the concrete functionality of the accelerators is au-
tomatically generated to match the specified filtering and data
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transformations, all accelerators use the same architectural
template as a basis. This template, which is also depicted in
Fig. 3, comprises four main components. The first component,
the control component (Fig. 3.a) is simply a register file, which
is mapped into the memory space of the on-chip ARM core.
The registers can then be used for communication between
CPU and PE.

The second component, marked (b), of the template is
concerned with loading and storing data from/to memory.
As described in the previous section, the PEs do not have
direct access to the Flash memory. Instead, the input data is
loaded from the DRAM via the corresponding AXI4 interface
provided by the Zynq PS. The loading and processing of data
takes place at a granularity of 32KB blocks.

The two tuple buffers in the accessor component, marked
(c), are responsible for converting between the native bit-size
of the memory interface (64 bit on Zynq-7000), and the actual
size of a tuple in the KV-store (i.e., a key-value pair).

The computation component, marked (d) in Fig. 3, consists
of two main functional units: The filtering unit will discard any
tuple that does not match a user-specified predicate. Predicates
can evaluate elements of the key, as well as the value and, in
contrast to prior work [1], can also be defined across multiple
columns. This is achieved by the option of chaining multiple
filtering units, each evaluating a single predicate. The number
of filtering stages is configurable, and the framework will
automatically generate the required logic.

The second functional unit is the data transform unit, which
transforms the tuples that passed the filter, as defined by the
user. Example for transforms include discarding RocksDB
meta-data, or unnecessary columns. Both units, the filtering
unit as well as the data transformation unit, are generated
automatically, as described in the next section.

B. Automatic Generation of NDP Accelerators

In general, the underlying abstraction of most contemporary
databases is structured application data. An example for this
structuring are relational databases, that impose a database
scheme on all of the stored data. As an alternative to relational
databases, key-value stores employ a less structured way of

/ * @autogen d e f i n e p a r s e r Point3DTo2D w i t h
c h u n k s i z e = 32 , i n p u t = Point3D , o u t p u t = Point2D ,
mapping = { o u t p u t . x = i n p u t . y , o u t p u t . y = i n p u t . z }
* /
t y p e d e f s t r u c t { u i n t 3 2 t x , y , z ; } Point3D ;
t y p e d e f s t r u c t { u i n t 3 2 t x , y ; } Point2D ;

Fig. 4. Example Code showing how a PE is defined for automatic generation.
The generated PE will automatically transform data from the Point3D-type
to Point2D-type, discarding the field x. Additionally, the Point3D-structs
can be filtered using predicates on all of the present fields (x, y and z).

storing data. While key-value stores typically do not enforce a
structure, most applications still use structured data. Thus, the
application might use string-based key-value stores to store
the binary data, maintaining the application-level structuring
of the data outside the KV-store. The application would then
use an internal record-based datatype (e.g. structs), and
transform this data into a corresponding key-value pair. The
resulting key-value pair obviously has the same structure as
the underlying struct.

For our automatic generation, we have to assume that
the data is structured, as we would not be able to interpret
the value data for filtering or other processing otherwise.
Typically, an application will use data-classes or structs to
represent this structure. By interpreting these type-definitions,
our tools can generate the matching hardware NDP units
for the specified data structures. In our framework, we rely
on C-inspired type-definitions, as well as annotations for the
specification of the PEs. This allows the database engineer
to reuse his application code for the generation of PEs. An
example for the specification of a PE is given in Fig. 4.

From the parsed type-definitions and annotations, an in-
ternal representation of these types is built. This internal
representation is limited to data-types that are suitable for
hardware-processing. Specifically, integers and single/double
precision floating point types are supported. In addition to
these primitive types, it is also possible to work with (nested)
arrays and (nested) structs. For byte-arrays, it is also possible
to flag them as string-data using a prefix annotation. If
the annotation is given, the corresponding byte-array will be
split into a prefix that is handled as a regular field, while
the rest of the byte-array is not used for predicate-evaluation.
The reason for this lies in the potential sizes of strings, which
makes them very hard to process in hardware.

For example, the output of the Tuple Input Buffer is
just a sequence of bits containing the complete data of the
corresponding struct. With the information gathered by the
contextual analysis, these bits can be interpreted. For example,
consider a struct Point which encodes the coordinates x,
y and z (all 32 bit integers) of a point in three-dimensional
space. The hardware now knows, that the first 32 bits encode
x, while the second 32 bits encode y, etc. Using this infor-
mation, it is now possible to filter points that lie behind a
certain threshold (filtering), or project the 3D-data into a two-
dimensional space (data transformation).



Contextual Analysis As described previously, the contex-
tual analysis phase of our tools is responsible for computing
the data-layouts from the parsed representations of the type-
definitions. To simplify this process, the contextual analysis
performs multiple transformations on the struct data-type. The
input to the contextual analysis are trees representing the
struct-types. Each node describes a different part of the overall
structs, with leaf nodes representing actual primitive types
(e.g., integers), while regular nodes can be nested structs or
arrays. In the first step, arrays that are annotated to represent
strings are transformed into structs, which contain a prefix-
field followed by an array, which contains the rest of the
string (postfix). After strings are resolved in this manner,
the next step removes arrays completely from the tree, by
flattening them into structs with a corresponding sequence
of scalar element fields. In essence, an array uint_32t
[2] becomes the struct struct {uint_32t elem_0,
elem_1;}. Since the data layout is identical for both, this
scalarization simplifies the following steps. In a final step, the
contextual analysis determines the largest relevant field. Rel-
evant fields are those that can be used for filtering predicates.
In our case, this includes all primitive fields except string-
postfixes. Using the size of the largest field, the contextual
analysis then determines, whether other fields have to be
padded. The padding ensures that all relevant fields can be
processed in a single comparator unit.

Memory Interface The memory interface contains a Load-
and a Store-Unit, both having access to the PS-DRAM via a
shared AXI4 Full interface. In contrast to [1], we opted for
more flexible units. Vinçon et al. rely on fully static units
that always load and store complete data blocks (32 KByte).
While this keeps the hardware footprint minimal, it is not very
efficient with regard to the use of memory bandwidth. Due to
the Data Transformation step, which often removes elements
such as metadata from the tuples, the output is almost always
smaller than 32 KByte. As memory contention is a major
bottleneck, reducing the number of memory accesses will
improve the performance. In our work, the Load- and Store-
Unit can be configured (using the Control Register File) to
store variable amounts of data, thereby reducing unnecessary
memory accesses and memory contention.

Tuple Buffers The Tuple Buffers transform the unstructured
data retrieved from memory into processable structured data,
and back again for storage. To do this, a buffer is used to
group the incoming stream of 64 bit words, until one or more
complete tuples are available. According to the padding and
type information gathered by the contextual analysis phase,
this word is split into a vector of correspondingly padded
words. A second vector contains all of the disregarded string-
postfixes. The string-postfixes are carried along the computa-
tions, but cannot be accessed. The Output Buffer reverses the
transformation of the Input Buffer, so that the result can be
stored back by the Store Unit.

Filtering Unit This module provides the selection-
functionality on the incoming stream of tuples. To do this,
hardware is generated that allows the comparison of tuple-
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Fig. 5. Internal structure of the Filtering Unit.

members against a given reference-value using a set of
compare-operations. An important extension over the work
presented in [1] is the fact that the set of operators can be
easily extended in our toolflow. Each operation is represented
using a function mapping two data-words to a boolean value,
which in turn is used to determine, whether a tuple is filtered
out. Using a user-defined set of operations or the pre-defined
standard set of operations ( ̸=, ==, >, >=, <, <=, nop),
the Compare Unit is generated. Since our toolflow relies
on the Chisel3-framework [7] for the implementation of the
actual hardware, this also enables flexibility. For example,
the framework supports interfacing to Verilog and VHDL,
which in turn allows addition of custom compare-operations.
A schematic view of the filtering unit is shown in Fig. 5.

The input and output are FIFOs. In each cycle, a present
tuple is dequeued from the input FIFO and one of its elements
is selected using a multiplexer. This element is used as input
to the Compare Unit which also uses the compare value and
operator select to determine the exact operation to perform.
The resulting signal is used to determine, whether the current
tuple is to be enqueued into the output queue. A very important
advantage of this architecture is the chainability. Due to the
clear interface, this unit can be chained multiple times to allow
the evaluation of multiple predicates in a pipeline, which was
not possible with the architecture in [1].

Data Transformation Unit The Data Transformation Unit
is automatically generated from the given struct-types. Both
input and output are tuple-FIFOs. During the generation of the
Data Transformation Unit, the framework will automatically
match each (nested) field of the output-struct to the appropriate
(if any) field of the input-struct. Using this mapping of input-
to output-fields, hardware will be generated that implements
this transformation. In general, there are three cases: 1) When
the input and output are of the same struct-type, tuples are
simply passed through. 2) If the output-struct contains only
(nested) fields that are also present in the input-struct, the
mapping is automatically derived. 3) If the output struct-type
contains (nested) fields that are not present on the input, the
user has to specify which (nested) input-field is to be used.
While this is very flexible, it also requires user interaction in
the form of corresponding annotations. An example for this is



/ * * C o n t r o l R e g i s t e r A d d r e s s e s . * /
# d e f i n e START 0
# d e f i n e BUSY 4
[ . . . ]
# d e f i n e FILTER OP 0 60
# d e f i n e CYCLE COUNTER 64
/ * * Genera ted F u n c t i o n s * /
u i n t 3 2 t f i l t e r s y n c ( . . . ) { . . . }
u i n t 3 2 t f i l t e r a s y n c ( . . . ) { . . . }
void w a i t u n t i l d o n e ( . . . ) { . . . }

Fig. 6. Snippet from the generated software-interface that can be used to
interact with the PEs.

shown in Fig. 4 with the mapping-key. Using this key, it is
defined that y and z are used for the projection into 2-d space.
Without a mapping, the toolflow would default to the second
case and use x and y for the projection.

Composition All of the described modules are then com-
posed into a PE. Due to their latency-insensitive design, the
corresponding interfaces can be directly wired-up. Addition-
ally, all modules are automatically connected to their respec-
tive control registers. The control register file is automatically
configured to provide the required number of registers.

C. Automatic Generation of the Software Interface

In addition to automatically generating the PEs for perform-
ing the NDP operations, we also added a tool pass, which
automatically generates a software-interface for controlling the
PEs. The reasoning behind this is to allow a database-engineer
to use the PEs without any additional knowledge about how
they work and how they are controlled.

Using the information about the Control Register File and
the behavior of the PEs, we generate the software-interface
bottom-up: First, we generate compiler-macros for encoding
the different addresses. From these macros, we built simple
software-functions for accessing the different control registers.
In a final step, we use these access-functions to built more
complex functionality, such as synchronous and asynchronous
filtering functions using one or multiple of the filtering stages.
For debugging-purposes, functions are generated for printing
the state of the PE and for outputting the corresponding data-
types. All generated functions are collected in a single header-
only library file, which can then be added to the project by
the database-engineer in order to exploit the PEs.

An example-snippet of the generated header-only library file
is given in Fig. 6.

V. EVALUATION

We will first compare our automatically generated PEs
against the hand-crafted units used in [1]. Since [1] has already
shown that the NDP approach outperforms the typical non-
NDP approach, we will omit this discussion. Then, we will
examine the hardware utilizations of the generated PEs and
determine their usability on the OpenSSD Cosmos+ SSD
platform. All hardware-syntheses are run targeting the Xilinx
Zynq-7000 SoC (XC7Z045). In all designs, the Flash con-
trollers and processing elements are clocked at a frequency

of 100 MHz, while the NVMe-Core is clocked at 250 MHz,
which is in line with the original baseline. While a higher
frequency could improve the performance of the PEs, the main
bottleneck in this architecture is the available Flash bandwidth.

Performance For the performance evaluation, we use the
same benchmarks as in [1]. They work on a sample dataset
for a publication reference graph. The nodes of the graph
are papers published in journals and conferences. The edges
of the graph are references between those papers. Over-
all, the dataset is comprised of 3,775,161 Paper-Entries and
40,128,663 references between them. For the evaluation, we
run GET- and SCAN-operations using the same software-NDP
baseline as well as the adapted algorithm, which uses the
corresponding PEs. Note that for both operations the execution
is implemented in a hybrid way, where the software executes
a very general algorithm and exploits the hardware whenever
datablocks have to be filtered or transformed.

The resulting NDP-runtimes for GET are shown in Fig. 7
(a). Note that both the NDP hardware and software run-
times we report for GET are slightly slower (ca. 10%) than
those given in [1]. This is due to updated firmware for the
COSMOS+ board, which traded some performance for higher
reliability. As described in [1], it also makes sense that the
GET-operation does not profit greatly from hardware support,
since it is sequential and the configuration-overhead (i.e.,
writing control registers) of accelerators is too high to make
an overall difference. Even though, the GET-operation does
not improve, the automatically generated PEs are similar in
performance in comparison to the ones used by [1].
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Fig. 7. Execution times of the GET and SCAN operations, comparing our
work to the work provided in [1]. For both Operations execution is executed
with HW-acceleration (HW) and without (SW).

The SCAN operation has much longer runtimes, making
the minor firmware-induced timing variations between [1]
and our measurements negligible. As in [1], the hardware-
accelerated NDP SCAN is faster than the software version.
The performance of our generated accelerator is on par with
the manually optimized one as shown in Fig. 7 (b). Using the
generated PEs slightly increases the runtime by 0.018 seconds
from 5.512 seconds to 5.530 seconds.

An additional extension of our work is the possibility to
generate PEs featuring multiple filtering stages. Using multiple
pipelined filtering stages allows the implementation of more
complex NDP-functionality. Moreover, due to the use of elastic



pipelines, additional filtering stages will only add very small
increases to the overall execution times. Since the filtering
stages are able to process a tuple per cycle, the increase in
latency of additional filtering stages will be marginal. Espe-
cially for compute-bound tasks, this would give the hardware
accelerators an edge over the use of the on-device ARM-cores.

Hardware Utilization We generated accelerators that pro-
vide the same filtering and transformation functionality as [1]
and compare our hardware utilization against theirs. Specifi-
cally, we use 1 paper-PE to process the nodes in the graph
and 7 ref-PEs to process the edges. Since [1] only reports
slices for the PEs, we limit our comparison to slices as well.
Please note that each of our generated accelerators also uses
a single BRAM slice, which was not the case for the custom
built processing elements of [1].

TABLE I
FPGA RESOURCE UTILIZATION OF THE PES USED IN [1] AND OUR

WORK. THE DESIGN CONTAINS THE COMPLETE COSMOS+ OPENSSD
PLATFORM AS WELL AS 1 PAPER-PE AND 7 REF-PES.

Slice Util. (abs.) Slice Util.(%)
[1] Our Work [1] Our Work

Overall 40821 41934 74.70 76.73
paper-PE 9480 14348 17.35 26.25

ref-PE 1277 1446 1.41 2.65

Available 54650 54650 100.00 100.00

Table I shows the corresponding utilization results. It is
noteworthy that for both of the PE-types, the resource uti-
lization has grown. Some of this can be attributed to the
improved Load- & Store units, which have become more
flexible. Specifically, instead of always processing blocks of
a certain size, our infrastructure can be configured to load
only partial data blocks. Analogously, the Store-Unit can
be configured to write back partial blocks. Since the Data
Transformation will typically strip data away, this reduces the
overall amount of data read and written, which in turn reduces
memory contention. Also, note that the overall increase is less
than expected, considering the size increases of the individual
PEs. This is due to a more efficient use of interconnects in
our refined architecture template.

We also evaluated the amount of hardware required for
multi-staged filtering, as well as for different tuple sizes.
For the first part, we take a closer look at the correlation
between tuple-sizes and required hardware. For this part of
the evaluation, we rely on out-of-context synthesis. In out-
of-context syntheses, only a selected part (in our case the
PE) is synthesized without the rest of the surrounding ar-
chitecture. The resulting utilizations represent the amount of
logic resources required without very dense packing. For the
generation of the PEs, we used a number of different input
formats that feature tuple sizes ranging from 64 bits up to
1024 bits. For of these sizes, we specified a struct with the
corresponding number of uint32_t and uint8_t values.
Input and output types are identical and mapped automatically.
For each size, we generate a PE that is able to compute on the

complete tuple (at the granularity of 32-bit fields) and another
PE, where half of the data is discarded using string-prefixes.
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Fig. 8. Out-of-Context Slice Utilization of generated PEs in correlation to the
size of the processed tuples. Half refers to accelerators using the prefixing,
whereas Full refers to the ones using all data.

The results are shown in Fig. 8. An interesting observation is
the fact that for smaller PEs, the use of string-prefixing yields
a higher slice-requirement. At a first glance, this would make
the prefixing irrelevant. To understand why prefixing is still
necessary in some cases, we have to consider that the critical
part of our hardware is the Filtering Unit with the compare
operations at its core. In Fig. 9, all fields have a width of 32
bit, which means that the corresponding compare-operators are
also 32 bit operators. For the 1024 bit struct, the corresponding
string-data would have an overall size of 512 bits. A full-width
compare unit would vastly increase the amount of required
hardware. Thus it is still reasonable to use the prefixing.

Lastly, we take a closer look at the multi-stage feature
and the resulting hardware-requirements. For this part of the
evaluation, we reuse the same data-formats as in the previous
step, but focusing on 256 bit structs only. For both (with
and without string-prefixes), we built accelerators with up
to 5 filtering stages for more complex predicates. Of these,
especially the 2-staged ones are interesting, since they could
be used to implement RANGE SCANs. Again, the utilization
results were obtained using out-of-context synthesis.
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Fig. 9. Out-of-Context Slice Utilization (in percent) of generated PEs in
correlation to the number of filtering stages. Additional stages increase
resource requirement in a linear fashion, but provide more flexibility. The
use of string-prefixing (Half) has only minor impact.



Looking at the results shown in Fig. 9, we can see an almost
linear correlation between the number of stages and the slice
requirement. Additionally, we observe that the increase per
additional stage is small compared to the overhead incurred
by the fixed part of the template (Load/Store Unit, Tuple
Buffers). This implies that multi-stage filtering incurs only
minor additional cost, while offering a lot more flexibility.

VI. RELATED WORK

The first approaches for Near-Data Processing, moving
computation closer to the data date back to as early as the
1970s. However, approaches such as database machines [8]
or ActiveDisk [9]–[11] were severely limited by the I/O-
limitations and memory bandwidth of mechanical hard-drives.

Only after the wide-spread availability of modern non-
volatile storage solutions, e.g., Flash-based SSDs, significant
advances in the performance of Near-Data Processing systems
became possible. Approaches such as SmartSSD [12]–[14]
exploit the much higher I/O-bandwidth of modern storage
devices as, for example, provided by parallel, independent
Flash-channels. JAFAR [15], [16] was one of the first systems
focusing on Near-Data Processing for DBMS. Biscuit [17] was
another approach targeting NDP for DBMS, namely MySQL.
In contrast to our work, they only employed the ARM-based
CPUs found in commodity SSD hardware for software-based
Near-Data Processing, but also identified the lack of a usable
framework for programming NDP PEs as an important issue.
Our framework allows to automatically generate FPGA-based
Filtering and Data Transformation units from simple user-
input. It thus offers a solution to make FPGA-based NDP
acceleration accessible to non-FPGA experts.

With their HRL architecture [18], Gao et al. present a
new hardware architecture targeting NDP that combines fine-
grained reconfigurable regions, as found on FPGAs, with
coarse-grained regions as common in Coarse-Grained Recon-
figurable Arrays (CGRA). Their overall system architecture
combines this accelerator with DRAM in an Hybrid Memory
Cube (HMC), but does not include non-volatile memories.

Architectural challenges and other considerations on how
to integrate FPGAs into Near-Data Processing architectures
were discussed by Dhar et al. [19] and Becher et al. [20].
While Dhar et al. envisioned an architecture featuring Flash
storage and a combination of FPGA and High-Bandwidth
Memory (HBM), with the FPGA processing data cached in
HBM, the ReProVide architecture proposed by Becher et al.
uses a combination of an ARM CPU and an FPGA, similar
to our approach. In the multiple dynamically reconfigurable
regions of the FPGA, different pre-synthesized NDP PEs can
be used. However, these accelerators must be hand-crafted and
cannot be generated automatically.

VII. CONCLUSION & OUTLOOK

In this work we have developed a framework for the
automatic generation of FPGA-based accelerators for the use
with Near-Data Processing applications. Our evaluation shows
that our automatically generated accelerators provide almost

identical performance compared to a setup with hand-crafted
hardware accelerators. This is worthwhile, since our approach
effectively removes the need for custom hardware develop-
ment and lowers the entry barrier for hardware-accelerated
databases. Moreover, our multi-staged filtering approach en-
ables more powerful computations with minimal overhead.

While filtering and transformation of data are wide-spread
use-cases that can easily be realized using our framework,
more computational and analytical tasks could also be per-
formed using this architecture. In future work, we will in-
vestigate, how we can leverage the data-parallelism of the
architecture to perform more compute-intensive tasks. Using
our architecture, it is possible to access and process all tuple-
elements in parallel, which could offer great potential for faster
analysis of the processed data.
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