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ABSTRACT
Current data-intensive systems suffer scalability as they transfer
massive amounts of data to the host DBMS to process it there. Novel,
near-data processing (NDP) DBMS architectures and smart storage
can provably reduce the impact of raw data movement. However,
transferring the result-set of an NDP operation, may increase the
data movement, and thus, the performance overhead.

In this paper, we introduce a set of in-situ NDP result-set man-
agement techniques, such as spilling,materialization, and reuse. Our
evaluation indicates a performance improvement of 1.13× to 400×.
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1 INTRODUCTION
Regardless of the increasing data sizes and the evolution of storage
technology, modern DBMS employ traditional data-to-code archi-
tectures. They require growing amounts of data to be transferred to
the DBMS host to be filtered and processed there. Data movement
turns into a performance and scalability limitation, as it consumes
scarce bandwidth and increases resource and energy consumption.
The advent of intelligent storage and disaggregated memory en-
ables Near-Data Processing (NDP) architectures and code-to-data
paradigms appear that target execution of DB-operations close to
where data is physically stored. To this end, NDP can leverage the
higher device-internal bandwidth, parallelism and especially faster
storage for data processing and filtering. Yet, not only raw raw
movement data impairs performance. As there are different types
of NDP operations (e.g., size-reducing but also non-size-reducing
ones) and different execution modes, result-set management for
NDP operations looms as an important factor.

The core intuition of this paper is that NDP necessitates result-
set management techniques. This observation is governed by the
following trends. Firstly, modern intelligent storage is capable of
managing result-sets, both intermediary and final. Different NDP
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Figure 1: State-of-the-art approaches prioritize for result fil-
tering or I/O throughput. Native NDP Result Handling com-
bines those dimensions and improves overall performance.

operations need it due to their potentially non-size-reducing nature
or their execution mode. Secondly, storage (like Flash or NVM) is
cheap and abundant as these technologies offer high density. Lastly,
in-situ storage access is much faster in terms of both bandwidth
and latency, compared to device-to-host.

State-of-the-art overview. NDP approaches [4, 5, 7, 18, 19] es-
tablish the following principles. Firstly, pioneered by IBEX [18, 19],
smart storage devices support either tuple- or block-based access.
The former is typically used for the result tuples of an NDP oper-
ation. Thus the result transfer units contain only fully-qualifying
tuples (Fig. 1). The latter is employed for foreground I/O, i.e., any
foreground read/write operation accessing raw blocks. Intel’s Block-
NDP [4] improves the latter by allowing an NDP operation to return,
while raw blocks contain partially-qualifying data filtering out the
rest (Fig. 1). Both are sub-optimal due to the large transfer over-
heads.

Secondly, qualifying tuples or blocks are transferred up to the
host immediately, i.e., as soon as they are produced. Depending on
either the selectivity or the NDP operation itself, the immediate
result-set transfer mode may cause significant overhead. Further-
more, it may preclude employing optimizations such as a single
large low-overhead DMA transfer, utilizing the full I/O bandwidth.
The immediate host transfer precludes a reuse of those results on
the device, whether by a follow-up NDP operation or by the host
itself. The latter is very favorable for analytical and data science
operations, e.g., k-means with different number of centroids or
iterations.

In a nutshell, while current tuple-based approaches reduce the
overall volume by transferring the precise result tuples, they may
not attain the best performance due to transfer overhead and low
bandwidth utilization. Conversely, block-based approaches may
utilize the full I/O bandwidth, but incur a performance penalty by
transferring more data. Noticeably, none of them allows for reuse.

NDP Result-Set Management. In this paper we introduce var-
ious result-set management techniques for NDP operations execut-
ing on-device. Such in-situ result handling techniques are applicable
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Figure 2: NDP reduces the raw data transferred from device to
host, yet its resultmanagement impacts performance (blue vs.
yellow). With bandwidth-optimized systems, best results are
achieved with large densely-packed transfer units (yellow).

to different kinds of NDP operations and yield a overall reduction
of data movement. These techniques favor not only obvious selec-
tions and early projections that are size-reducing, but also JOIN
and GROUP BY that both are I/O intensive and non-size-reducing.
We introduce spilling techniques for various operators and local, in-
situ materialization of their results. Such materialization allows for
efficient data transfer up to the host, e.g., in a single low-overhead
DMA transfer, minimizing the cost of data movement. Furthermore,
in-situ materialization enables the reuse of the result-set locally for
the next NDP operation (yielding hybrid NDP execution models)
or for a follow-up operation to be executed later on. Last but not
least, they enable fault-tolerant NDP executions as individual NDP
operations within a pipeline can be seamlessly re-executed upon a
failure as their input is persistent and available.

We attempt to quantify the effects in a motivating experiment
(Figure 2). We compare the execution of a query with 20% selec-
tivity on a host DBMS-engine that transfers all data to the host
to process it there, against an NDP execution of the same query,
which performs all raw data transfers in-situ. Thereby, it employs
different NDP result-set transfer approaches and varies the result
transfer granularity. Clearly, choosing a small transfer granularity
(tuple-based) incurs high result data movement overhead and re-
duces performance, while transferring the full result-set in a single
large DMA transfer yields the best performance.

The contributions of this paper include the following:
• We introduce in-situ result-set materialization that enables
combining arbitrary NDP operations intoNDP pipelines. NDP
pipelines that reduce the overall data transfer to the host
even though they may contain non-size reducing operations.

• We also introduce on-device spilling of data to persistent
storage (e.g., Flash), by which NDP operations are viable
even on resource-constrained intelligent storage devices (e.g.,
especially in memory).

• Furthermore, we introduce the reuse of results materialized
in-situ in further processing without significant overhead.
Additionally, this reuse enables fault tolerance e.g., in com-
plex pipelines.

NDP Pipeline:

BEGIN TRANSACTION TX1:

     SELECT attr1,... FROM tbl1,… WHERE attr1 <= ?
COMMIT;
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Figure 3: Different ways of transferring results from the de-
vice to host exist. While Block I/O transfers all raw pages, on-
device block filtering reduces data transfers. Pushing down
entire pipelines necessitates intermediate and final result
management, spanning tuple-based and blocks of tuples.

We move on to present the related work (Sect. 2) and introduce
NDP pipelines. Then, we discuss in-situ result-set materialization
(Sect. 3) and system design (Sect. 4). Their performance impact is
experimentally evaluated in Sect. 5.

2 RELATEDWORK
The first proposed approaches of Near-Data Processing such as
Database machines [6] or Active Disk/IDISK [1, 10, 13] occur al-
ready in the late 1980s. With proprietary magnetic/mechanical
storage hardware, they achieved to execute small processing tasks
near the storage. With the advances in the semiconductor indus-
try, numerous systems [3, 4, 7–9, 14–16, 18–20] were established.
While most of them focus on the hardware aspects of NDP, only
a few give insights about their result management. IBEX [18, 19]
exploits a tuple-based interface for executing joins on-device to
ease the integration into the volcano-style MySQL database. A com-
pletely different approach is pursued by BlockNDP [4], which sets
up on the interface of traditional filesystems and enables filtering
on block-level granularity. While both approaches have their bene-
fits for their given system architecture, in this paper, we propose a
general concept for result-set handling on smart storage.

2.1 Result-Set Management
We now discuss the different types of result handling techniques in
existing solutions, also depicted in Figure 3.

Block I/O. The classical approach is to use traditional I/O to read
the physical pages that belong to a certain database object (Figure 3,
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Option A), which is also often referred to as Block I/O [18, 19].
The drawback of this approach is that much of the data stored on
those pages is either not required for the processing entirely or
is discarded during the processing, i.e., by a selection criteria or
projection. Consequently, the storage system bus is not used at its
full potential even though its bandwidth might be fully exhausted.

Block-level NDP. One approach to avoid reading pages that
are discarded later by the execution engine, is to discard those
already in-storage. Thus, introducing in-situ processing on block-
level granularity (Figure 3, Option B) allows filtering the physical
pages according to some criteria and transfer only the matching
(e.g., BlockNDP [4, 5]). As a consequence, the bus system band-
width is only spent for reading pages containing some relevant
data. However, physical pages usually still comprise multiple tu-
ples, sometimes even in different arrangements that constitute data
unnecessary for the execution engine. Hence, the bus is still not
fully leveraged efficiently.

Tuple-based. With NDP it becomes viable to execute whole
portions of a query execution plan, comprising multiple operators
on-device. SuchNDP pipelines comprise multiple database operators
(e.g. selection, projection, joins, grouping and aggregation, etc.)
with the goal of reducing the overall data movement up to the host.
Noticeably, NDP pipelines produce intermediary and final results,
both of which need to be carefully managed, because of the different
nature of the operations (e.g. size-reducing or not, pipeline-able or
not). For both intermediary and final results, one approach is to send
them tuple per tuple (Figure 3, Option C), similar to a volcano-style
execution engine. This clearly eases the integration into volcano-
style DBMS and also allows for transferring only relevant data to
either the next operator (intermediary result) or the host (final
result). Unfortunately, this also entails a heavy communication
overhead, especially with state-of-the-art bandwidth-optimized bus
systems (PCIe) and protocols (NVMe).

Blocks of Tuples. To fully optimize the storage bus utilization
by firstly transferring only relevant data and secondly leveraging
the bus and database engine properties properly, we propose an
approach that can batch multiple result tuples (intermediary or
final) into transfer units/blocks. In our approach, the size of these
units can be configured from very small, to achieve a tuple-based
behaviour, up to very large, to align with present bus or system op-
timized settings. Therefore, a pre-allocated set of on-device address
locations is used and assigned to a certain format of tuples. Tuples
are appended until the configured size is reached.

3 IN-SITU MATERIALIZATION
The above mentioned approaches treat results only as transient
data, while their consumption happens immediately after their gen-
eration. Our approach introduces the ability to (fully) materialize
them, as well as consume them in a deferred manner. It processes
the results later on (see consumption mode, below) or even reuses
them multiple times (see reuse semantics, below). In general, mate-
rialization can be achieved for both, final and intermediary results.
This also requires space on the computational storage device, which
is abundant and cheap. Space allocation is performed for each NDP
invocation by the Native Storage Manager [12] of the DBMS.
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Figure 4: NDP Pipelines can materialize intermediate and
final results in-situ, e.g., for reuse in further processing stages
or to overcome resource constraints of NDP-Devices.

Consumption Mode. NDP pipelines necessitate different result
consumption modes. As shown in Figure 4.A, NDP_Pipeline #1,
𝑇𝑋1 is annotated with an immediate consumption. Hence, it treats
the operation’s input data and its result as transient, and relies on
pipelining. Given an immediate consumption, the final results are
transferred back to the host (Figure 4.D) as soon as a result unit
(e.g., a result tuple or a block of result tuples) is produced.

In this paper we introduce two additional alternatives. Firstly, we
allow for in-situ materialization of intermediary results for either
follow-up NDP operations or upcoming NDP pipelines (Figure 4.B).
The latter can be issued completely asynchronously. Secondly, we
allow for result-spilling (Figure 4.C). It is applicable to operators
such as a hashtable-based GROUP BY or an HASH JOIN implemen-
tations that exceed the on-device memory limits. These limits can
be easily reached, as especially consumer-grade NDP devices have
constrained hardware resources.

With materialization in place, NDP pipelines can also be instru-
mented with a deferred consumption mode as depicted in Figure 4.E,
NDP_Pipeline #2. Thereby, the final results are not transferred back
to the host immediately, but rather stored on the persistent storage
for consumption at later point in time from the host or from another
NDP pipeline.
Parsers and Accessors. The native NDP approach in nKV [15, 16]
is based on the concept of in-situ data interpretation. To this end,
NDP parsers and accessors have been proposed [15, 17] to handle
data from the base tables.

However, database operations in an NDP pipeline typically con-
sume intermediary results from previous stages, for which no suit-
able parsers and accessors exist. Consider for example, Figure 4.F,
where the scan in NDP_Pipeline #2 can be optimized to consume the
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intermediary results from NDP_Pipeline #1. To handle interpreta-
tion of intermediary results, we extended the parsers and accessors
[15, 17] to cope with the different record formats of intermediary
results and interpret intermediary data on-device to avoid data
movement.
Reuse Semantics.Whenever a result (intermediary or final) is ma-
terialized its data is available for consumption until its address space
is released. Hence, multiple queries can reuse the data by either
consuming it from the computational storage device (Figure 4.G)
or processing (Figure 4.F). By releasing the data, their allocated
storage location is flagged for garbage collection and will be erased
with its next execution.
Space management, allocation and planning. nKV [15, 16]
is based on the concept of native storage [12]. In essence, native
storage [12] mandates that the DBMS operates directly on the
physical storage avoiding intermediary layers, i.e., a file system or
on-device translation layers. As a result, functionality like address
mappings or garbage collection is deeply integrated in nKV.
Planning and allocation. The planner estimates the upper bounds of
the sizes of intermediary and final results along an NDP-pipeline. If
the estimate exceeds a predefined buffer size, then amaterialization
or spilling stage is injected in the NDP-pipeline.

Depending on the size estimation, the planner and the storage
manager employ an allocation strategy that targets fast levels of
the on-device memory hierarchy first, e.g., on-device DRAM. If
insufficient, a materialization and spilling to persistent storage is
planned. In this sense, every materialization stage is assigned an
exclusive physical address range by the native storage manager
as the DBMS controls the address mapping. If the space proves
insufficient, the execution stalls and the computational storage
requests more space from the DBMS in an extra roundtrip to the
host.
Space management and garbage collection. nKV controls storage di-
rectly, manages logical-to-physical address mapping, and schedules
the garbage collection (GC). It allocates and exclusively assigns
physical address ranges to each pipeline and its materialization or
spilling stages. Thus, nKV ensures that other transactions, pipelines
or NDP operations do not overlap in the same storage space. nKV
preserves these address ranges for the duration of the execution
until the completion of the invoking transaction or the reuse phase.
Only then nKV’s storage manager marks them for GC and performs
an asynchronous GC call, which is executed as an NDP operation.

4 SYSTEM DESIGN
To investigate the previously described aspects of result-set man-
agement and in-situ materialization, we integrated those concepts
into MyRocks. As storage manager, we use nKV [15, 16], an NDP-
capable KV-Store based on RocksDB that already supports a native
storage interface towards computational storage devices. Moreover,
we define a communication protocol on top of NVMe, which allows
host-device interactions to take place, while several interconnected
and distributed state machines facilitate the NDP processing on-
device (Figure 5).

Communication Protocol. Our proposed communication be-
tween the host and device is kept lean to avoid any unnecessary data
transfers and host-device roundtrips. Prior to any processing, the
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Figure 5: The system design relies on a lean communication
protocol and multiple interconnected state machines, as well
as shared memory to manage results of NDP pipelines.

device must allocate sufficient resources for the planned command.
Therefore, the host can reserve an NDP Slot on-device (Figure 5.A)
which is then assigned to a given processing id (PID). Subsequently,
an NDP invocation is performed by means of NDP_EXEC as an
NVMe command (Figure 5.B). Besides all relevant parameters for
the execution, the command includes pre-allocated physical pages
for either in-situ materialization or spilling, as well as a monotoni-
cally increasing host interaction id (HI), ensuring a total order of
all upcoming interactions. From this point onward, the processing
will be fully managed by the device itself and executed without any
intervention with the database engine. Whenever a block of tuples,
as the final result-set, exceeds its limits, the associated NVMe com-
mand is returned with the respective results as payload (Figure 5.H).
Upon that, the host can repetitively issue further NDP_EXEC com-
mands until all results are retrieved and the NDP pipeline reached
its completion. The NDP Slot is automatically returned afterwards.
Upon an error during processing or in the event of insufficient
resources (e.g., pre-allocated physical pages), the NVMe command
is returned with a status field indicating the cause. As described in
Sect. 3, the native storage manager resolves it, by scheduling GC
or by allocating further pages and issuing a follow-up NDP_EXEC
commands with the respective action, i.e., by passing new free page
addresses to the device.
On-Device State Machines. In general, the processing elements,
e.g., cores, on the intelligent storage device can be subdivided in
a single managing core and multiple processing cores (Figure 5).
Thereby, several state machines, interconnected via a shared mem-
ory, run simultaneously on each core to perform certain function-
alities. The managing core runs the NVMe Engine and interacts
with the host via the previously described protocol as shown in
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Figure 5.A/B/H. The NDP Engine is responsible for allocating the
NDP Slot, transferring either information or extracting results from
the HIs (Figure 5.C). Its counterpart on the processing cores con-
tinuously polls for new HIs of the NDP Slot (Figure 5.D) before
executing the NDP pipeline. During execution, persistent data is
requested via flash reads towards the flash engine located on the
managing core. Result tuples are placed into blocks of the respec-
tive HI (Figure 5.G) before they are returned to the host. Thus, the
NDP engine can continue running on the processing cores, while
existing results are transmitted up to the host in parallel by the
managing core. This way interleaved pipelining is achieved.

5 EXPERIMENTAL EVALUATION
Experimental Setup.We use MyRocks (MySQL 5.6) with nKV [15,
16] as storage manager. The COSMOS+ board [11] is employed as
an NDP-capable storage device and rough equivalent to a consumer-
gradeNVMe SSD or smart storage device (e.g., Samsung SmartSSD [8]).
It comprises a Zynq 4045 SoC with an FPGA, two 667 MHz ARM
A9 cores, and an MLC Flash module configured as SLC. The board
is connected via PCIe 2.0 ×8 to a host with a 3.4 GHz clocked In-
tel i5 CPU and 4 GB of RAM, running Debian 4.9. The maximum
transfer size per NVMe DMA request is limited to 1 MB, due to the
NVMe engine of COSMOS+. Therefore, this is also our largest result
transfer unit.
Configurations. As a baseline for the evaluation, we use nKVwith
native storage, but without NDP (Native). It eliminates file system
and block-device layers, and allows for leveraging the physical
properties of the underlying storage with native storage manage-
ment [12, 15, 16]. The results are compared to the NDP configura-
tion which utilizes one ARM core exclusively, as managing core
and performing host-device communication and interacting with
the flash controller. The other ARM core is used as processing
core and is dedicated to NDP pipeline processing. It uses on-device
200 MB DRAM as block buffer and 32 kB intermediary result buffers
between pipeline stages if not mentioned otherwise. MyRocks is
configured to have a memory footprint of around 10% of the data
set size, including a block buffer of 1.4 GB.
Dataset and Workload. As dataset we utilize LinkBench [2] con-
figured with 10M Nodes and 20 GB of data. Queries are always
issued after a cold start to avoid measuring unintended effects from
caching and to ensure consistent results.
Experiment 1: Efficient NDP result handling can reduce not
only the data to be transferred from device to host, but also
improve execution duration by batching multiple results in
larger transfer units. In our first experiment, we investigate the
influence of the result transfer granularity on the execution dura-
tion. To this end, we employ a simple selection-projection query
SELECT id, type,...FROM nodetable WHERE type <= ?; and
vary the selectivity to increase the result-set size and the amount
of data to be transferred. As a baseline, we report the execution
time for classical block-based I/O with the Native stack (Figure 6,
blue). By using the NDP stack (Figure 6, yellow), we continuously
increase the granularity of the data transfer unit from 1 kB (simu-
lating tuple-based) to the limit of 1 MB (blocks of tuples).

NDP reduces the device-to-host data transfers to the final re-
sults of the given query. The only remaining cost is for reading and

Native (baseline) NDP

Figure 6: Traditional Block I/O cannot filter data on-device
(blue) in contrast to NDP. Yet, transferring results in small
granularities (e.g., tuple-based) entails high communication
overhead (yellow). NDP wins after the intersection.

filtering the data, as shownwith 0% selectivity. With higher selectiv-
ities, the amount of data to be transferred increases. Furthermore,
the transfer granularity also entails an overhead of handshakes
between host and device in the PCIe/NVMe communication. Thus,
with COSMOS+, the best execution is obtained by transferring large
blocks of tuples that improves the performance by up to 27%.

Insights. NDP result management is capable to adapt to and opti-
mize for the given underlying storage link technology. Therefore, it
is necessary to adjust the granularity of transfer units accordingly
by either sending tuple-per-tuple or by batching multiple result
tuples into blocks of specific sizes.
Experiment 2: Concurrent execution of processing and fi-
nal result transfers as pipeline stages improves performance.
NDP pipelines can be divided into several processing and result
management stages. Our approach foresees a finite state machine
that enables a concurrent execution of those stages (interleaved
pipelining). Thus, final results can be transferred to host, while the
NDP device processes the next batch. In this experiment, we inves-
tigate the impact of interleaved pipelining and transfer granularity
on the execution duration (Figure 7). We execute the query from
Experiment 1 on the NDP stack with (yellow) and without (brown)
interleaved pipelining and vary the granularity of transfer units.

In general, the performance with interleaved pipelining is signifi-
cantly faster than processing and transferring results in a sequential
order. Particularly, small transfer granularities that entail a high
communication overhead benefit from interleaved pipelining, short-
ening execution durations by up to 30%. Yet, the largest possible
COSMOS+ transfer size (1 MB) improves performance by 13%.

Insights. Interleaved pipelining enables result-set transfers while
further processing is executed concurrently. Thereby, it efficiently
conceals the communication overhead entailed by smaller transfer
units, benefits larger transfer blocks, and shortens host processing
delays. Other approaches are bound to the standard block granu-
larity, while nKV can vary it.
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Figure 7: Using on-device state machines enables interleaved
pipelining that improves execution significantly.

Experiment 3: Result materialization can be achieved with-
out a significant execution runtime overhead inNDPpipelines.
Next, we investigate the costs of materializing final results of an
NDP pipeline in Figure 8. Again, we execute the query of Exper-
iment 1 on the Native (blue) and the NDP (yellow) stack without
materialization as baselines. The same query is repeated as NDP
pipeline that materializes its final results on Flash and immediately
retrieves those via classical I/O (brown). We vary the selectivity to
determine the impact of the final result size on the materialization
cost.
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Figure 8: Final result materialization and deferred consump-
tion (brown) entail a small overhead over immediate con-
sumption (yellow) and outperform the baseline (blue).

Executing the query as NDP pipelines outperforms the Native
baseline by up to 40%, despite materialization, even for higher
selectivities. In fact, materialization costs largely depend on the
final result-set size, and thus, add up 4% to 20% on the original
execution time. However, this increase also includes the final result-
set retrieval from Flash.

Insights. NDP pipelines allow to materialize their results on
device without high execution overheads. Thereby, the cost for
materialization increases with higher selectivities and result sizes,
while still outperforming the Native baseline.
Experiment 4: The reuse of in-situ materialized results has
marginal costs and amortize thematerialization costs already
after the second consumption. Last but not least, we investigate
the reuse of in-situ materialized results. In particular, we focus on
the materialization of Experiment 3 and extend it with the costs of

NDP result materialization without consumption (brown), result
reuse on the host (magenta), and NDP result reuse on-device (red)
as shown in Figure 9 on a logarithmic scale.
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Figure 9: Reuse ofmaterialized results improves the host (ma-
genta) and on-device (dark red) performance significantly.

Since NDP result materialization without consumption (brown)
does not require retrieving the result data after persisting it to Flash,
it shortens the execution duration by up to 12% compared to NDP
immediate consumption (yellow), and by up to 45% compared to
Native, depending on the selectivity and the respective result-set
size. However, consuming it in a deferred manner will add up the
costs for either reuse on host or reuse on-device, and thus, will be
marginally slower than NDP immediate consumption, while still
outperforming the Native baseline. However, the full potential of
reusing materialized data develops by the second execution (Fig-
ure 9 right). While reuse on host has significantly lower duration (up
to 95%, compared to NDP immediate consumption), reuse on-device
can speed up the consumption even further by 73× to 400× over
NDP immediate consumption, since reading previously filtered data
leverages the full Flash parallelism of COSMOS+. This is especially
useful for iterative (e.g., k-means) or follow-up NDP operations.

Insights. NDP pipelines enable an efficient and flexible mate-
rialization of results. They can be consumed either immediately
or deferred. Moreover, the materialized data can be reused multi-
ple times on the host but also on-device with significantly lower
execution times.

6 CONCLUSION
In this paper, we introduce novel NDP result-set management tech-
niques to reduce the performance impact of result-set data transfers
and enable reuse and better NDP execution modes. Based on the
observation that the space on modern smart storage is cheap and
fast, with low-latency and high-bandwidth data transfers, we intro-
duce in-situ operator spilling, in-situ materialization, and on-device
reuse techniques. These allow for richer NDP pipelines involving
non-size-reducing operators and reuse. Our evaluation indicates
that in-situ reuse improves performance by up to 95% for host con-
sumption and 73-400x for on-device consumption, materialization
results in 45%, while the optimal transfer granularity yields 27%.
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