
Cache-Coherent Shared Locking for Transactionally Consistent
Updates in Near-Data Processing DBMS on Smart Storage

Arthur Bernhardt∗, Sajjad Tamimi#, Florian Stock#, Tobias Vinçon∗, Andreas Koch#, Ilia Petrov∗
#Embedded Systems and Applications Group, ∗Data Management Lab

#Technische Universität Darmstadt, ∗Reutlingen University

ABSTRACT
Even though near-data processing (NDP) can provably reduce
data transfers and increase performance, current NDP is solely
utilized in read-only settings. Slow or tedious to implement syn-
chronization and invalidation mechanisms between host and
smart storage make NDP support for data-intensive update oper-
ations difficult. In this paper, we introduce a low-latency cache-
coherent shared lock table for update NDP settings in disaggre-
gated memory environments. It utilizes the novel CCIX inter-
connect technology and is integrated in neoDBMS, a near-data
processing DBMS for smart storage. Our evaluation indicates
end-to-end lock latencies of ∼80-100ns and robust performance
under contention.

1 INTRODUCTION
Data-modifying operations on large datasets can impair perfor-
mance, as they may request data residing on cold storage, causing
significant data movement [13]. This poor data locality results
in massive data transfers that are necessary to verify which data
meets the update conditions. To avoid this, Near-Data Process-
ing (NDP) can leverage the higher device-internal bandwidth,
parallelism and especially faster storage latencies compared to
host-to-device.
Problem 1: Read-only NDP. Even though NDP can provably
reduce data transfers and increase performance [9], currently
NDP is utilized solely in read-only settings [2, 4, 9, 14]. Yet, in
update-intensive settings, e.g., under HTAP or OLTP workloads,
transactional consistency becomes an issue. On the one hand,
the most recent updates of OLTP-style transactions are only
available in the large DBMS memory [5], likely scattered across
different data structures. On the other hand, NDP operations,
offloaded to smart storage, require the most recent data in-situ,
alongside the cold persistent dataset. To this end, we recently
proposed nKV[15–17] and neoDBMS[3, 15] that define a small
shared-state that collects all modifications to main-memory data
and DBMS state. The shared-state is regularly flushed to smart
storage, whenever it reaches a pre-defined limit, but most impor-
tantly, it is propagated as part of every NDP invocation. Thus, at
the point of invocation, the smart storage attains a complete and
consistent snapshot, and a read-only OLAP NDP operation can
execute with transactional consistency guarantees. Moreover,
the in-situ execution is asynchronous and free from DBMS/host
intervention (intervention-free NDP).
Problem 2: Update NDP. Another major source of data move-
ment are large data-intensive modification operations [13], which
cannot be handled by snapshot-based, intervention-free NDP. To
avoid update anomalies in update-NDP settings, low-latency,
cache-coherent invalidation or synchronization mechanisms are

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

TXHost TXNDP

BEGIN TX

COMMIT

BEGIN TX

WRITE
(rec)

COMMIT

Synchronization

rec,
v1

rec,
v1à v2rec,

v1à v2

smart
storage

main
mem.

NDP_WRITE
(rec)

Invalidation

rec,
v1

rec,
v1à v2

rec,v1

smart
storage

main
mem.

TXNDP

BEGIN TX
NDP_WRITE
(rec)

TXHost

BEGIN TX
READ(rec)

COMMIT

A B

COMMIT

Figure 1: Concurrent 𝑇𝑋ℎ𝑜𝑠𝑡 and 𝑇𝑋𝑁𝐷𝑃 transactions
anomalously create invalid version branches and commit.

necessary. The former invalidates the in-memory state (e.g., tuple
versions, buffer, or address mapping entries) that an NDP oper-
ation has modified, effectively forcing the host DBMS to fetch
the most recent data from storage to prevent the inconsistent
use of the outdated in-memory data, in turn avoiding write/read
conflicts (Fig. 1B). Given the latter, the smart device sends ad hoc
lock-requests during NDP update processing, to avoid write/write
conflicts (Fig. 1.A).
Introductory Scenario. Consider an NDP transaction (𝑇𝑋𝑁𝐷𝑃)
offloading a modification operation to a record rec onto smart
storage (Fig. 1). An initial version of rec is present both on device
and in memory. The NDPmodification of𝑇𝑋𝑁𝐷𝑃 executes free of
host-intervention, creating a new record version rec.v2, while in
the same time a host transaction𝑇𝑋𝐻𝑂𝑆𝑇 does the same, creating
its own rec.v2, as the host DBMS is unaware of the on-device
modification. As a result of the write/write conflict two version
branches occur causing unresolvable inconsistencies. Clearly,
such conflicts can be mitigated by exclusively locking the table
containing rec ahead of𝑇𝑋𝑁𝐷𝑃 execution, yet this is impractical
as it would severely limit concurrency. Alternatively, Optimistic
Concurrency Control (OCC) techniques are also possible, yet
their verification phasemandates transferring the NDP read/write
sets, causing additional data transfers, which likewise limits their
applicability.
Shared lock-table. In this paper, we introduce an approach for a
shared lock-table between smart storage devices and a host that
relies on cache-coherent Shared Virtual Memory (ccSVM), which
is enabled by new accelerator interfaces such as CCIX (used here)
or CXL. Our solution is realized in neoDBMS, which is an NDP-
DBMS, integrating ccSVM-capable smart storage. CCIX (Cache
Coherent Interconnect for accelerators(X)) [10] is a novel coher-
ent interconnect technology between general-purpose CPUs and
accelerator devices, aiming at efficient heterogeneous computing.
CCIX allows for low-latency ccSVM, atomics like atomic CAS or
load/store, and address translation between host and (externally-
attached) accelerators. Indeed, CCIX yields latencies of 80-100 ns
at cacheline granularity, which are comparable to the NUMAlink
latencies ≤500ns [11] in a large-scale main-memory system. To
the best of our knowledge, this is the first paper to exploit CCIX
for DBMS use and for NDP in disaggregated memory settings.

Our contributions are: (i) We present an approach for a CCIX-
based cache-coherent shared lock table for synchronization in

Short Paper

Series ISSN: 2367-2005 424 10.48786/edbt.2022.34

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.34

update NDP settings. Furthermore, we are investigating howwell
CCIX is suited for use in NDP; (ii) We compare CCIX and PCIe
latencies; (iii) We show how neoDBMS utilizes CCIX to enable
transactionally consistent updates on native smart storage.

The paper is organized as follows. We continue by providing
background on SVM and ccSVM technologies as well as on the
architecture of neoDBMS. In Sec. 3 we describe the design of
our ccSVM lock table, with aspects such as logging and recovery
being considered out of scope. The evaluation follows in Sec. 4.

2 BACKGROUND
2.1 Shared-Virtual Memory
Shared Virtual Memory (SVM) extends the concept of virtual
memory from a single CPU to an entire group of devices. A
regular CPU has access to the complete memory hierarchy and
can manage every processes running on it. But in case of external
hardware, such as accelerators, where either the CPU accesses
that hardware, or where the hardware autonomously accesses
the host memory, extra care must be taken.

From a developer standpoint, this has a number of drawbacks:
working with memory addresses from the host system is cum-
bersome: translation is possible, but has to be done explicitly
(e.g., multiple address translations when working with linked
list data from the host). The same applies to cache coherence
with the host system, which for PCIe has to be ensured manually.
Also, SVM operations typically require just small amounts of
data, especially compared to the large transfer sizes (256. . . 512
KB) required for PCIe to reach maximum throughput. In addition,
the relatively long PCIe latencies make it unsuitable for the short
messages used in automated cache-coherence protocols.

2.2 Cache-Coherent SVM Interconnects
Cache-Coherent Interconnect for Accelerators (CCIX) is
an advanced I/O interconnect that enables cache-coherent data
sharing between various devices (e.g., CPUs and accelerators)
mechanically connected via PCIe slots, but using different proto-
cols [8]. CCIX supports signaling rates between 16-25 GT/s per
link, while cache coherence is automatically maintained. CCIX
supports multiple kinds of partners: Home Agents (HA) passively
manage coherence and memory accesses to a specific address
range; Request Agents (RA) actively initiate local and non-local
read/write accesses to HAs and may perform local caching. E.g.,
for making host memory available to an accelerator that also has
local memory, the host will be both an HA (for its own memory)
and RA (for accessing accelerator memory), while the accelerator
will just be an RA, assuming its own memory is not used in a
cached manner. If both CCIX end points support Extended Speed
Mode (ESM), they can agree on a higher link speed than PCIe (25
GT/s ESM vs. 16 GT/s PCIe 4.0).
Compute Express Link (CXL) is similar to CCIX, but was
initially established by Intel. It is expected to become the industry-
wide standard, but is not supported yet in commodity hardware.
In contrast to CCIX, which treats host and accelerator as peers,
CXL has a CPU-centric, asymmetric view. With respect to the
link speed, CXL is limited by PCIe (i.e. with PCIe 4.0 it will reach
16 GT/s, with PCIe 5.0, it is 32 GT/s).
CAPI/OpenCAPI is yet another contender for a cache-coherent
interconnect. Designed by IBM, it is an interconnect implemented
in the CPU to access accelerators. It uses a high bandwidth, low
latency interconnect that runs in POWER9 CPUs in its CAPI-2

incarnation at 32 GB/s on top of PCIe 4.0. A latency compari-
son of the above standards is provided in [1] (under different
settings): 737ns on PCIe Gen3, <555ns on PCIe Gen4 and 378ns
on OpenCAPI.

2.3 Architecture of neoDBMS
We now provide a brief overview of neoDBMS and demon-
strate the need for efficient synchronizationmechanisms between
DBMS and smart storage to further increase the potential of NDP.
Native Storage Manager. neoDBMS is an NDP DBMS, based
on PostgreSQL, designed for smart / computational storage use
on non-volatile memory (NVM). Furthermore, to eliminate in-
termediary layers along the critical I/O path (e.g., file systems),
neoDBMS relies on native storage [12] like NoFTL [7] and nKV
[16]. neoDBMS can therefore control the physical placement of
DB pages and operate directly on DBMS-controlled NVM storage.
Snapshot creation and visibility checking. Multi-versioning
and MVCC are the foundation of neoDBMS, as they fit current
workloads, such as HTAP, very well. However, due to multiple
physically co-existing versions of tuples, every transaction needs
to operate against a snapshot of the DB that includes all currently
visible tuple versions (i.e. the latest committed versions visible to
the transaction). The snapshot can include versions in the current
working-set, primarily stored in the large DBMS memory, but
also versions found in a cold persistent dataset already offloaded
to smart storage. In order to ensure transactionally consistent
NDP execution, neoDBMS collects all modifications on the host,
which also include the latest changes to VID𝑀𝑎𝑝 and L2P𝑀𝑎𝑝

(described below), in a small shared state area, which is regularly
flushed to smart storage. All NDP invocations also force the
propagation of the current shared state, which is temporarily
stored as part of a delta buffer (Fig. 3).

Utilizing multi-versioning and snapshots allows NDP read
transactions to operate intervention-free on the latest committed
versions visible to them without stalling. Update transactions,
on the other hand, do need to consider that modifying transac-
tions concurrently executed on both host and smart storage can
simultaneously create inconsistent version branches (e.g., Fig. 1).
Version Organization and Invalidation. In-situ snapshot cre-
ation is also possible and efficient because of neoDBMSs ver-
sion organization. All versions of a tuple (i.e. tuple X, Fig. 2) are
organized in a new-to-old (N2O) organization [18], forming a
singly-linked list [6]. Every successor version includes the refer-
ence (RecordID) to the predecessor, forming a version chain (i.e.
𝑋 .𝑣1 reference to 𝑋 .𝑣0 Fig. 2). Due to native storage, all logical
RecordIDs can be resolved to physical persistent pointers through
a logical-to-physical address mapping L2P𝑀𝑎𝑝 (Fig. 2). Addition-
ally, neoDBMS introduces a VID𝑀𝑎𝑝 per DB-Object which serves
as an entry-point to the version chain. For all tuples the RecordID
of the latest version is stored together with a VID, which is the
same for all versions of a tuple. The N2O organization enables
one-point invalidation to determine the currently visible version
of a tuple to a transaction. Each version contains the timestamp
of either the creating/updating transaction (i.e.𝑇𝑋𝐶 ,𝑇𝑋𝑈 Fig. 2).

RecID Tuple VID

VID(X)

VID(Y)

X.v0 TXc

....

X.v1 TXU1

Y.v0 TXc Y.v5 TXU5

VIDMAP L2PMAP
One-Point Invalidation

New-to-Old Version Ordering entry-point to version chain

resolve

address

(RecID)

Logical
Page

Physical
Page

Figure 2: Version organization/invalidation of neoDBMS.

425

Smart storage architecture and interfaces. The type of smart
storage that we use in this paper provides an array of processing
elements (PEs) for NDP execution. An NDP invocation first prop-
agates the small shared state to the device and then partitions the
VID𝑀𝑎𝑝 , assigning each partition to one of the PEs. Each PE can
independently start a visibility check task and intervention-free
calculate the snapshot (i.e. traverse the version chain) with all
visible tuple versions corresponding to 𝑇𝑋𝑁𝐷𝑃 as output. For
in-situ data interpretation and page layout navigation, neoDBMS
employs format parsers and layout accessors, which also support
resolving RecordIDs (Fig. 3). The output is the complete and con-
sistent snapshot of the entire dataset with respect to the invoking
transaction, to be consumed by follow-up operations. That said,
modifying NDP operations cannot guarantee consistency, due
to the limitations of the existing host-smart storage synchro-
nisation mechanisms, which are ill-suited either due to lack of
performance or exceeding complexity. neoDBMS addresses this
issue by sharing a small host memory area with the smart storage
over latency-optimized CCIX for cache-coherent SVM (Fig. 3).
In this area, we realize a light-weight and efficient shared lock
table.

3 CACHE-COHERENT SHARED LOCK
TABLE

We now describe the cache-coherent shared lock table (ccSLT) and
its integration in neoDBMS and smart storage. Additionally, we
demonstrate how it enables the invalidation and synchronization
of individual tuple versions in update NDP settings.
Organization. Our lock table supports tuple/row-level locking.
It is allocated in ccSVM and is therefore shared between DBMS
and smart storage. ccSVM is provided and managed by CCIX-
Agents which provide low latencies for small random accesses,
while automatically maintaining cache-coherence and address
translation. This is especially useful for the placement of our small
lock-entries. The foundation of the lock table is a hash table which
manages the access to certain tuple versions and can thus be used
as a synchronization mechanism. The optimal size of the hash
table varies depending on the workload characteristics and is
therefore configurable. In neoDBMS, we target small hash tables
sizes with just a fewmegabytes. To determine the bucket position,
we employ a hash function using a combination of VID and tuple
version number as key. Each bucket represents a small queue that
stores the timestamps of transactions. The queue is designed to fit
into a cache-line of 64 bytes. With a slot size of eight bytes, it can
store up to eight transactions requesting a tuple lock. The first slot
represents the transaction currently holding the lock, while the
other slots are waiting to acquire the lock and therefore represent
pending lock requests. Hash collisions can potentially reduce

P
E

A
R

R
A

Y

invoke
operation

gather
results

read / write
(PCIe)

shared state
propagation (PCIe)

neoDBMS

U280
FPGA

NVM

CC-SVMDelta Buffer
Tuple-Locking HW-Module

Result-
Set

CC-SVM
NDP-

Sheduler

Format
Parser

Layout
Accessor Read-Operation

Update-OperationVisibility Checker

Native Storage Manager
Executor

CCIX-Managed

Figure 3: Architecture of neoDBMS on smart storage.

concurrency, but can be mitigated through careful table sizing,
and utilizing the unique and monotonically increasing nature of
the VIDs. Collisions do not impact the transactional consistency.
If a lock is released, the entire queue is shifted by one slot to
pass the lock to the next transaction. If the queue is already full,
transactions must wait until a free slot becomes available. The
shared lock table is controlled by the host via software interfaces.
In addition we designed a hardware tuple locking module (Fig. 3)
that accepts lock requests, handles hashing, and manages atomic
CCIX transfers. The module also notifies processing elements
about changes in the lock status. To ensure race-free placement
and release of locks, neoDBMS relies on atomic compare and
swap (CAS) operations, which are supported both by the tuple
locking HW module and CCIX itself.
Protocol. Consider 𝑇𝑋𝑁𝐷𝑃 seeking to update tuple 𝑡 (i.e. latest
committed version 𝑡𝑣1). 𝑇𝑋𝑁𝐷𝑃 requests and obtains the tuple
lock for 𝑡𝑣1 and proceeds to create a new version 𝑡𝑣2. The request
traverses the queue (single cacheline access) and inserts the TX
timestamp via an atomic CAS operation at the next free slot. In
the current example the queue is still empty and the timestamp
can be stored in the first slot, thus acquiring the lock immediately.
At the same time, another transaction 𝑇𝑋𝐻𝑂𝑆𝑇 starts updating
the same tuple. Since 𝑇𝑋𝑁𝐷𝑃 is not yet committed, the tuple
version visible to 𝑇𝑋𝐻𝑂𝑆𝑇 is still 𝑡𝑣1. 𝑇𝑋𝐻𝑂𝑆𝑇 can not obtain
the tuple lock, as the first slot has already been acquired by
𝑇𝑋𝑁𝐷𝑃 and coherently synchronised with the host over CCIX.
Instead, 𝑇𝑋𝐻𝑂𝑆𝑇 queues up into the next free slot. Execution of
𝑇𝑋𝐻𝑂𝑆𝑇 therefore halts, but𝑇𝑋𝐻𝑂𝑆𝑇 registers to receive commit
or abort events of the transaction that will pass on the lock. This
avoids having to continuously check the queue status in host
transactions. Device transactions, on the other hand, need to
check the lock queue continuously by polling. However, CCIX
can cache the lock queue on device, and as long as no changes are
performed by the host, only local accesses are necessary, thus not
increasing contention. In this manner, the ccSLT can serve as a
lightweight synchronization mechanism to prevent the creation
of inconsistent version branches.

Now consider the commit process of 𝑇𝑋𝑁𝐷𝑃 . 𝑇𝑋𝐻𝑂𝑆𝑇 is still
unaware of the modifications performed by the smart storage. Yet,
all transactions in neoDBMS are initiated by the DBMS. Although
operations can be offloaded to smart storage, they still commit or
abort on the host side. This also includes the release of any tuple
locks that the transaction holds. The result set module on smart
storage (Fig. 3) gathers all VIDs modified in the process and sends
them back to the host, which can then efficiently release the tuple
locks and, at the same time, fetch updates to the VID𝑀𝑎𝑝 due to
the list of modified VIDs. Upon commit, 𝑇𝑋𝐻𝑂𝑆𝑇 is notified and
can continue execution. Based on the updated VID𝑀𝑎𝑝 ,𝑇𝑋𝐻𝑂𝑆𝑇

is now aware of the updates and the, now outdated, in-memory
version of 𝑡𝑣1 is invalidated. This could be simplified even further
by also employing ccSVM to perform address mappings like
VID𝑀𝑎𝑝 . 𝑇𝑋𝐻𝑂𝑆𝑇 continues and requests a lock for 𝑡𝑣2.

4 EXPERIMENTAL EVALUATION
Experimental Setup. The experiments are conducted on an
ARM Neoverse N1 System Development Platform (N1-SDP) that
serves as a host. It has 4× ARM N1-CPUs operating at 2.6GHz
and a total of 16GB RAM. To prototype the smart/computational
storage, a CCIX-capable Xilinx Alveo U280 FPGA (AU280) board
is connected via a CCIX-enabled PCIe Gen3 slot to the host. The
Alveo U280 is equipped with two off-chip 16GB DDR4 DIMMs.

426

Both devices support CCIX, with the N1-SDP being configured
as CCIX-HA (Home Agent), and the AU280 as CCIX-RA (Re-
quest Agent). This setup allows neoDBMS to allocate contiguous
pinned memory on the host, which can then be accessed in a
cache-coherent manner from the NDP-PEs on the AU280. Pin-
ning the memory helps to further improve the latency of CCIX by
reducing the address translation overhead. The dedicated tuple
locking HW module on the AU280 is implemented in Bluespec.
Experiment 1: Shared Lock Table Latencies (Host and De-
vice). We begin with a general experiment to investigate the
end-to-end performance of the CC Shared Lock Table (Fig. 4),
measuring lock request latencies on host and device, and investi-
gating the behaviour under different degrees of contention. We
instrument both the host and the smart storage device to con-
tinuously create lock requests. At the same time, we gradually
increase the degree of contention on the other side. Beginning
from 0% parallel requests up to 100%, where both sides request
locks simultaneously (Fig. 4).

Insight: Under low contention, tuple versions can be locked on
the host with low latencies of 80-100ns. Under high contention
and increasing synchronization effort due to CCIX coherence
events, the host still provides robust performance with latencies
around 400ns, which is comparable to the latencies archieved by
NUMALink [11] (380-500ns). Using non-local atomic read/write
CCIX transactions, the device is able to maintain constant lock-
latencies of 800ns, and is unaffected by the increased contention
due to directly updating the memory of the host.

This experiment indicates that the placement of CCIX-HA
and CCIX-RA is an important design decision. If the host exe-
cutes a latency sensitive OLTP-style workload, it should be the
one acting as CCIX-HA. Alternatively, if the workload is NDP-
update intensive and incurs high frequency NDP-modifications,
the CCIX-HA should be placed on the smart storage device.

0

200

400

600

800

1000

1200

1400
Device Host (CCIX-HA)

percentage of parallel lock-request

La
te

nc
y

(n
s

)

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100%90%80%70%60%50%40%30%20%10%0%

Figure 4: Shared Lock Table Latencies with increasingly
parallel lock-requests.

Experiment 2: CCIX vs. PCIe. Next, we examine the data
transfer latencies for CCIX compared to PCIe, and demonstrate
the benefit of using the latency-optimized CCIX (Fig. 5).

We consider two transfer granularities 64B and 8KB, and mea-
sure them on device. First, cacheline-sized (64B) transfers are
most relevant for our cache-coherent Shared Lock Table, as they
represent the hash bucket size of the queue managing the tuple
version locks. Second, we consider transfer sizes of 8KB since
neoDBMS/PostgreSQL mostly operates on 8KB page granularity.
CCIX-internal pre-fetching allows the device to work on local

cache, achieving 80-100ns.We also report the cache-miss latencies
for non-local atomic read/write accesses. Notably, it is consistent
with the device latency of 800ns in experiment 1 (Fig. 4).

Insight. CCIX provides excellent latencies (80-100ns) for small
granularity (64B) accesses. CCIX latencies are comparable with
NUMAlink [11] latencies of ≤500 ns that are typical for large-
scale main-memory systems.

64 8192
0,00
0,50
1,00
1,50
2,00
2,50
3,00
3,50
4,00

0,10

1,82

0,70

3,41

1,05

2,27

0,08

1,92

0,69

3,02

0,53

1,29

CCIX Read CCIX Read (cache-miss) PCIe Read

CCIX Write CCIX Write (cache-miss) PCIe Write

Transfer Size (Byte)

L
a

te
n

cy
(

u
s

)

Figure 5: CCIX and PCIe Latencies on AU280 smart storage.

Experiment 3: PostgreSQLLocking in comparison to Shared
Lock Table To evaluate the impact of an additional tuple locking
mechanism in neoDBMS, we compare the internal PostgreSQL
shared tuple locking functionality, which can only lock on host,
against our CC Shared Lock Table (Fig. 6). In this experiment,
tuple locking was isolated to measure the end-to-end latencies for
placing a tuple lock. We execute 1M lock requests that either lock
the tuples sequentially, as they were inserted, or randomly. Fig. 6
shows a histogram of the distribution of latencies for individual
lock requests.

Insight. With 80-100ns for sequential and random locking,
the ccSLT yields much lower latencies than PostgreSQL, which
peaks at ca. 520ns. Sequential accesses profit from CCIX-internal
prefetching, shown by the shorter tail of the distribution.

 0
 200000
 400000
 600000
 800000

 1x106

 0 100 200 300 400 500 600 700 800 900 1000

R
at

e
of

 o
cc

u
rr

en
ce

Latency (ns)

CC Shared Lock Table - SEQ
PGSQL-SEQ

 0
 200000
 400000
 600000
 800000

 1x106

 0 100 200 300 400 500 600 700 800 900 1000

R
at

e
of

 o
cc

u
rr

en
ce

Latency (ns)

CC Shared Lock Table-RAND
PGSQL-RAND

Figure 6: Shared Locks PostgreSQL vs neoDBMS.

5 CONCLUSIONS
In this paper, we introduce tuple synchronization and invalida-
tion mechanisms on cache-coherent shared virtual memory for
near-data update processing in host/smart storage environments.
Our approach utilizes CCIX, a novel cache-coherent low-latency
accelerator interface. Beyond the synchronization examined here,
ccSVM also allows cooperative processing of large, highly linked
structures (e.g., graphs) on smart storage devices and host.
Acknowledgments.We thank the anonymous reviewers for the
valuable comments. This work has been partially supported by
DFG neoDBMS – 419942270 and HAW Promotion, MWK, Baden-
Würrtemberg, Germany.

427

REFERENCES
[1] Brian Allison. 2018. Introduction to the OpenCAPI Interface.

https://openpowerfoundation.org/wp-content/uploads/2018/10/
Brian-Allison.OPF_OpenCAPI_FPGA_Overview_V1-1.pdf.

[2] Gustavo Alonso, Timothy Roscoe, David Cock, Mohsen Ewaida, Kaan
Kara, Dario Korolija, David Sidler, and Zeke Wang. 2020. Tackling Hard-
ware/Software co-design from a database perspective. In Proc. CIDR.

[3] Arthur Bernhardt, Sajjad Tamimi, Florian Stock, Carsten Heinz, Chris-
tian Knoedler Tobias Vinçon, Andreas Koch, and Ilia Petrov. 2022. neoDB:
In-situ Snapshots for Multi-Version DBMS on Native Computational Storage.
submitted ICDE (2022).

[4] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu, Feng Zhu, and
Tong Zhang. 2020. POLARDBmeets computational storage: Efficiently support
analytical workloads in cloud-native relational database. In Proc. FAST. 29–41.

[5] Jaeyoung Do, J. Patel, D. DeWitt, and et. al. 2013. Query Processing on Smart
SSDs: Opportunities and Challenges. In Proc. SIGMOD.

[6] Robert Gottstein, Ilia Petrov, and et al. 2017. SIAS-Chains: Snapshot Isolation
Append Storage Chains. In ADMS@VLDB.

[7] Sergej Hardock, Ilia Petrov, Robert Gottstein, and Alejandro Buchmann. 2013.
NoFTL: Database Systems on FTL-less Flash Storage. Proc. VLDB Endow.
(2013).

[8] CCIX Consortium Inc. 2016. An Introduction to CCIX - White
Paper. https://www.ccixconsortium.com/wp-content/uploads/2019/11/
CCIX-White-Paper-Rev111219.pdf. (2016).

[9] Sungchan Kim, Hyunok Oh, and et al. [n.d.]. In-storage Processing of Database
Scans and Joins. Inf. Sci. 2016 ([n. d.]).

[10] David Koenen and Jeff Defilippi. 2017. CCIX: a new coherent multichip
interconnect for accelerated use cases. http://www.armtechforum.com.cn/

attached/article/C7_CCIX20171226161955.pdf.
[11] Timothy Prickett Morgan. 2014. SGI Scales Up HANA On

UV NUMA Systems. https://www.enterpriseai.news/2014/06/03/
sgi-scales-hana-uv-numa-systems/.

[12] Ilia Petrov, Andreas Koch, Sergey Hardock, Tobias Vincon, and Christian
Riegger. 2019. Native Storage Techniques for Data Management. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). 2048–2051.
https://doi.org/10.1109/ICDE.2019.00236

[13] Subhadeep Sarkar, Tarikul Islam Papon, Dimitris Staratzis, andManos Athanas-
soulis. 2020. Lethe: A Tunable Delete-Aware LSM Engine. In Proc.SIGMOD.
893–908.

[14] David Sidler, Zsolt Istvan, Muhsen Owaida, Kaan Kara, and Gustavo Alonso.
2017. DoppioDB: A Hardware Accelerated Database. In Proc. SIGMOD.

[15] Tobias Vinçon, Christian Knoedler, Leonardo Solis-Vasquez, Arthur Bernhardt,
Sajjad Tamimi andLukas Weber, Florian Stock, Andreas Koch, and Ilia Petrov.
2022. Update-aware Near-Data Processing for Database Systems onNative
Computational Storage. submitted VLDB (2022).

[16] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Andreas Koch, and Ilia Petrov.
2020. nKV: Near-Data Processing with KV-Stores on Native Comp. Storage.
In Proc. DaMoN.

[17] Tobias Vincon, Lukas Weber, Arthur Bernhardt, Christian Riegger, Sergey
Hardock, Christian Knoedler, Florian Stock, Leonardo Solis-Vasquez, Sajjad
Tamimi, Andreas Koch, and Ilia Petrov. 2020. nKV in Action: Accelerating KV-
Stores on Native Computational Storage with Near-Data Processing. PVLDB
12 (2020).

[18] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-memory Multi-version Concurrency Control. Proc.
VLDB Endow. 10, 7 (2017), 12.

428

