An Evaluation of Using CCIX for Cache-Coherent Host-FPGA Interfacing

Sajjad Tamimi, Florian Stock, Arthur Bernhardt, Ilia Petrov, Andreas Koch

The 30th IEEE International Symposium On Field-
Programmable Custom Computing Machines
FCCM 2022

Motivation and Goal

- PCI Express (PCle)
- Optimized for high-throughput bulk transfers
- Not efficient for small transfer sizes (cache-line size)

PO|N EXPRESS

- No cache-coherency between host and accelerator
- Cache-coherent SVM interconnects
- Cache-Coherent Interconnect for Accelerators (CCIX)
- Compute Express Link (CXL)
- Examining the use of CCIX cache-coherent host-FPGA interfacing
- Low-level measurements
- Application-level use-case
- Database Management System (DBMS)
- Near-Data Processing (NDP)

CCIX background

- Cache Coherent Interconnect for Accelerators (CCIX)
- Advanced I/O interconnect (chip-to-chip interconnect)
- Share data in a cache-coherent manner
- Set of specifications
- Extension to standard PCle specification
- CCIX agent types:
- Home Agent (HA)
- Request Agent (RA)
- CCIX-enable devices:
- Xilinx Alveo U280
- Versal ACAP (VCK5000)
- ARM Neoverse N1-SDP

CCIX Architecture and FPGA SoC

- System-on-Chip for request agent on
- Virtex UltraScale+ HBM (AU280)
- Versal ACAP (VCK5000)
- Address Translation Service (ATS)
- Using virtual address
- Address Translation Cache (ATC)
- CCIX timing model

Latency $=\mathrm{P}_{\text {ATC-hit }} \times$ Latency $_{\text {ATC }}$ $+\left(1-\mathrm{P}_{\text {ATC-hit }}\right) \times$ Latency $_{\text {ATS }}$

$$
\begin{aligned}
& +\mathrm{P}_{\text {cache-hit }} \times \text { Latency }_{\mathrm{r} / \mathrm{w}-\text { local }} \\
& +\left(1-\mathrm{P}_{\text {cache-hit }}\right) \times \text { Latency }_{\mathrm{r} / \mathrm{w}-\text { remote }}
\end{aligned}
$$

Measurement Setup

- Components
- Software Application Programming Interface (API)
- On-chip CCIX components
- CCIX Traffic Generator (CTG)
- Virtual addresses
- CCIX-enabled host
- ARM N1-SDP platform
- CCIX-enabled devices
- Xilinx Alveo U280 (AU280)
- Versal ACAP (VCK5000)

Exp. 1: CCIX vs PCIe - Latency and Throughput

- Assumption
- No address translation
- PCIe traffic
- TaPaSCo DMA-engine
- Physical address
- Read from host
- Better latency for less than 4KiB
- Optimized packet protocol
- Write to host
- Longer latency
- Read throughput (CCIX/PCle)
- $1 \mathrm{KiB}(3.3 \mathrm{X})$
- $32 \mathrm{KiB}(0.87 \mathrm{X})$

Exp. 2: Cost of Address Translation

- Assumption
- withATS: SC miss + ATC miss
- noATS: SC miss + ATC hit
- Small transfers:
- ATS overhead is $3 X$ of transfers
- Big transfers (>32KiB)
- Transfer latency dominates the ATS overhead
- \quad Size $\uparrow \rightarrow$ \#ATS req. \uparrow
- Eliminating ATS latency
- Linux huge page

Exp. 3: Data-Locality

- Assumption
- data-local: SC hit
- data-remote: SC miss
- No address translation
- data-remote
- PCle latency
- Host latency (HA)
- data-local (AU280)
- Write: ~80ns
- Read: ~100ns
- data-local (VCK5000)
- Write: ~150ns
- Read:~170ns

TECHNISCHE UNIVERSITAT DARMSTADT

Exp. 4: Coherency Efforts

- Simultaneously accessed and modified by the host and the accelerator
- Increasing degree of contention (with shrinking address range)
\rightarrow Increasing efforts required to maintain coherency
- 2X1024 random accesses
- No address translation

Coherency effort mostly affects the host's accesses latency FPGA-side accesses stays almost constant

Database Application: Motivation

- Near-Data Processing (NDP)
- Reduce data transfer
- Improve overall system performance
- Read-Only NDP
- Intervention-free

Multiple version branches cause unresolvable inconsistencies!

TECHNISCHE UNIVERSITA DARMSTADT

Database Application: Proposed Approach

- Goal: Enabling synchronization mechanisms between DBMS and smart storage
- neoDBMS architecture
- Shared lock-table
- Handle write/write conflict
- CCIX-based solution

TECHNISCH UNIVERSITA DARMSTADT

Database Application: Evaluation

- Continuously creating lock requests
- Smart storage: Alveo U280
- NeoDBMS: N1-SDP platform

Host and smart storage synchronization is enabled with very low overhead!

Thanks for your attention!

