
NVMulator: A Configurable Open-Source
Non-volatile Memory Emulator for FPGAs

Sajjad Tamimi1(B) , Arthur Bernhardt2 , Florian Stock1 , Ilia Petrov2 ,
and Andreas Koch1

1 Embedded Systems and Applications Group, Technical University of Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany
{tamimi,stock,koch}@esa.tu-darmstadt.de

2 Data Management Lab, Reutlingen University, Alteburgstr. 150, 72762 Reutlingen,
Germany

{arthur.bernhardt,ilia.petrov}@reutlingen-university.de

Abstract. Near-Data Processing (NDP) is a key computing paradigm
for reducing the ever growing time and energy costs of data transport
versus computations. With their flexibility, FPGAs are an especially suit-
able compute element for NDP scenarios. Even more promising is the
exploitation of novel and future non-volatile memory (NVM) technolo-
gies for NDP, which aim to achieve DRAM-like latencies and through-
puts, while providing large capacity non-volatile storage.

Experimentation in using FPGAs in such NVM-NDP scenarios has
been hindered, though, by the fact that the NVM devices/FPGA boards
are still very rare and/or expensive. It thus becomes useful to emulate
the access characteristics of current and future NVMs using off-the-
shelf DRAMs. If such emulation is sufficiently accurate, the resulting
FPGA-based NDP computing elements can be used for actual full-stack
hardware/software benchmarking, e.g., when employed to accelerate a
database.

For this use, we present NVMulator [7], an open-source easy-to-use
hardware emulation module that can be seamlessly inserted between
the NDP processing elements on the FPGA and a conventional DRAM-
based memory system. We demonstrate that, with suitable parametriza-
tion, the emulated NVM can come very close to the performance char-
acteristics of actual NVM technologies, specifically Intel Optane. We
achieve 0.62% and 1.7% accuracy for cache line sized accesses for read
and write operations, while utilizing only 0.54% of LUT logic resources
on a Xilinx/AMD AU280 UltraScale+ FPGA board. We consider both
file-system as well as database access patterns, examining the operation
of the RocksDB database when running on real or emulated Optane-
technology memories.

Keywords: FPGA · Non-volatile memory · Emulator

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. Palumbo et al. (Eds.): ARC 2023, LNCS 14251, pp. 35–50, 2023.
https://doi.org/10.1007/978-3-031-42921-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42921-7_3&domain=pdf
http://orcid.org/0000-0001-8092-2969
http://orcid.org/0009-0009-4056-4883
http://orcid.org/0000-0001-9411-0267
http://orcid.org/0000-0001-6042-9878
http://orcid.org/0000-0002-1164-3082
https://doi.org/10.1007/978-3-031-42921-7_3


36 S. Tamimi et al.

1 Introduction

With the ever-growing volume of data generated due to the success of the Inter-
net, Near-Data Processing (NDP) offers a promising solution to improve overall
system performance and optimize bandwidth usage. NDP achieves this by facil-
itating more direct access to the actual storage devices for suitable compute
elements, enabling both greater throughput as well as shorter latencies. FPGAs
serve as an ideal compute element for NDP applications for two primary fac-
tors. First, they can offer wide I/Os for direct connections to DRAM banks and
maintain a high level of fine-grained parallelism to manage multiple in-flight
requests from various Flash banks. Second, their inherent flexibility allows users
to readily implement their ideas and adapt to evolving requirements. Moreover,
the efficacy of NDP is more promising by the potential integration of cutting-
edge non-volatile memory (NVM) technologies. These innovative solutions offer
high-density storage, DRAM-comparable performance, and significant capacity
for persistent storage. As a result, the utilization of NDP in conjunction with
advanced NVM technologies holds significant promise for addressing the chal-
lenges posed by ever-increasing data generation.

Utilizing FPGAs in NDP-capable systems based on NVM remains a chal-
lenge, though, as NVM devices themselves or suitably equipped FPGA boards
are still very rare and/or expensive. To address this challenge, prior research
has proposed either software simulation or hardware emulation environments.
Software-based approaches utilize standalone simulators or those integrated with
DDR systems to model NVM behavior, facilitating the assessment of software-
based solutions [3,19]. On the other hand, hardware-based techniques propose
the emulation of NVM characteristics by leveraging commercially available DDR
on FPGAs. These methods introduce additional latency between read and write
accesses during the request handshake process [14] or alter the memory parame-
ters of the memory controller [16]. Despite their potential, these solutions neces-
sitate specialized devices that are also rare or expensive. Moreover, existing
research lacks a user-friendly NVM emulation environment that is compatible
with various FPGA platforms.

To allow research to push ahead here, we propose an open-source, user-
friendly Non-Volatile-Memory emulator (referred to as NVMulator) that can accu-
rately replicate the access characteristics of present and future NVM technologies
utilizing commercially available DRAM components. The NVMulator is designed
as a hardware emulation module that can be seamlessly integrated between
the NDP processing unit on an FPGA and conventional DRAM-based mem-
ory system. We demonstrate the application of the NVMulator within the con-
text of the reconfigurable computing framework Task Parallel System Composer
(TaPaSCo), which is an open-source platform offering both hardware and soft-
ware stacks for FPGAs for users, aimed at users without specialized knowledge
in the field. The objective of this work is to provide NVM access latencies by
creating a fully-functional and easily usable emulator.

In order to assess the efficiency of the proposed approach, we conducted a
comparative analysis with existing NVM technologies, specifically Intel Optane,



NVMulator 37

utilizing a Xilinx/AMD AU280 UltraScale+ FPGA board. Our evaluation was
carried out through two distinct methods. Initially, we employed a file-system
benchmarking tool (i.e., the FIO tool) to demonstrate the accuracy of the emula-
tor in the context of real-world workloads. Subsequently, we implemented on the
FPGAs an emulated non-volatile persistent storage for a host running RocksDB.
The findings indicate that not only can the emulator successfully emulate Intel
Optane within real-world applications, but it can also be seamlessly deployed as
emulated persistent storage with minimal effort. Note that our emulation only
considers timing behavior. Lower level characteristics such as reliability (wear)
and error rates are not covered, as they were out-of-scope for our use-cases.

In the remaining of the paper, first we give an overview of off-the-shelf NVM
technology as well as a discussion of related work in Sect. 2. Then, we present
NVMulator in Sect. 3.1 and we show how it is integrated in the TaPaSCo plat-
form in Sect. 3.2. Afterwards we evaluate the accuracy of the proposed approach
by comparison to OptaneDC memory in Sect. 4. We close with a conclusion in
Sect. 5.

2 Storage Technologies and Related Work

In this section we begin with an overview of NVM storage technologies and the
proposed NDP compute units. Afterwards, we discuss previous studies that have
aimed to emulate the characteristics of NVM.

2.1 NVM Storage Technologies

Due to their inherent characteristic, exploiting NVM as a storage system has
been often proposed by previous research in different domains, ranging from
embedded applications to data-centric applications. The properties of newer
NVM differ from those of conventional storage technologies such as Flash or
DRAM in the following ways:

Byte-Addressability. Newer NVM technologies are byte-addressable, similar to
DRAM, and do not rely on page-block accesses like Flash. This characteristic
presents new opportunities for NDP approaches that wish to utilize it, however,
current algorithmic approaches have not yet succeeded in fully utilizing byte-
level reads/writes on NVM.

Read/Write Latency. NVM technologies have higher access latency compared
to DRAM. For instance, Phase-Change Memory (PCM) has higher read/write
latency than DDR (though still comparable) but significantly lower latency than
NAND [6]. Additionally, read and write latency in NVM exhibit asymmetry,
characterized by low-latency read operations and slower write operations.

Non-volatile. Modern NVM technologies such as PCM and Spin-Transfer Torque
Memory (STT-RAM) are non-volatile. This means that data is preserved intact
even when the memory is powered off or in the event of memory or power failure.

Endurance. NVM technologies are wear-prone and face endurance challenges.
While NVMs have higher endurance compared to NAND Flash [6,9], imple-
menting wear-leveling strategies is essential to enhance their longevity.



38 S. Tamimi et al.

(a) AppDirect mode (b) Memory mode

Fig. 1. OptaneDC in (a) AppDirect and (b) Memory modes [18].

Intel Optane DC. Intel R© Optane
TM

DC Persistent Memory module (short:
OptaneDC) is an innovative and widely recognized technology developed by Intel
Corporation that has captured the attention of users. The OptaneDC technology
offers two configuration modes: Memory mode (cached) and AppDirect mode
(uncached) [18]. In Memory mode, users can extend the system memory capacity,
effectively increasing the overall performance and efficiency of the system. On the
other hand, AppDirect mode enables users to leverage the module as persistent
storage. Figure 1 shows the integration process of the OptaneDC memory module
into a system in these two modes. The primary objective of this study is to
examine and replicate the access latency of NVM when employed as persistent
storage.

NDP Compute Units. Prior research has explored various types of compute
units for Near-Data Processing (NDP) that can be classified into several cate-
gories. In the first category, studies such as [4,12] have proposed using exist-
ing embedded hard-core processors, such as multi-core ARM processors, for
query processing on Samsung’s smart-SSD devices. These processors are typ-
ically employed for controlling storage modules and managing wear-leveling to
enhance flash endurance.

In the second category, researchers have suggested FPGAs as NDP compute
units. [20] introduced an approach that connects an FPGA to the NVMe flash via
a PCIe interface, allowing for data processing in close proximity to the storage.
However, this method is limited by the bandwidth of the PCIe connection and
only enables processing close to, rather than near, the storage. [22] proposed
offloading operations from the query engine in the host to an embedded ARM
core and FPGA on the COSMOS+ board [17]. However, the underlying storage
in these approaches relies on NAND Flash. Generally, FPGA boards with NVM
devices scarce (often just prototypes) and/or expensive, posing challenges for
wider use.

2.2 Related Work

Prior research efforts to emulate NVM behavior can be classified into two cat-
egories: software-based and hardware-based solutions. In the following, we will
examine both of these categories.



NVMulator 39

Software-Based Solution. In the first category of research, prior studies have
explored the utilization of software to emulate the behavior of NVM as either
a standalone simulator or in conjunction with DDR systems. NVMain [19] is
a cycle-accurate main memory software simulator that effectively models NVM
architectural behavior, including aspects such as power consumption and perfor-
mance. The simulator facilitates seamless integration with the gem5 simulator,
providing a familiar user interface and simplifying the overall experimentation
process. HMMSim [5] is an NVM software simulator that incorporates hybrid
main memory, comprising both NVM and DDR, to emulate various memory
architectures, such as NVM. By offering an Application Programming Interface
(API), this work facilitates the evaluation of software solutions for managing
hybrid main memory systems. HME [5] is an NVM emulator that simulates
remote NVM on Non-Uniform Memory Access (NUMA) nodes by introducing
software delays to remote memory accesses. However, these solutions are solely
software-based and do not provide users with the ability to employ them as
persistent storage. Moreover, the execution time of these software emulations is
considerably longer compared to actual hardware implementations.

Hardware-Based Solution. In the second category of related research, prior
studies have focused on emulating NVM on FPGAs. TUNA [14] proposed adding
a module between the memory controller and processing element within the
design, which would enable NVM behavior emulation over existing off-chip DDR
memory on FPGA devices. This proposed module introduces additional latency
to handshake signals by applying a fixed delay for read and writes accesses.
While this approach is suitable for handling large data chunks, it lacks accu-
racy due to its disregard for memory bank parallelism in the overlaid DDR and
NVM systems. To address this limitation, authors in [15] [16] proposed intro-
ducing fine-grained latency to memory parameters, such as tRCD or tRP, to
more accurately mimic the underlying memory controller. However, modifying
the memory controller proves to be a challenging undertaking, particularly as
it often involves working with proprietary technology like the Memory Interface
Generator (MIG) IP provided by AMD/Xilinx.

While the existing body of research offers a foundation for further explo-
ration, to the best of our knowledge, no current solutions enable designers to
easily utilize NVM emulators across various FPGA platforms without the need
for specialized hardware. While internal FPGA prototype boards using actual
NVMs, such as PCM coupled to an AMD/Xilinx Virtex 7 FPGA, do exist, they
are not available to most researchers and often have hardware limitations that
make them unsuitable as a general-purpose platform.

3 Proposed Approach

We start by introducing the NVMulator micro-architecture and discussing the
proposed approach for emulating NVM characteristics. Then, we show the inte-
gration process of the NVMulator within the TaPaSCo FPGA computing frame-
work. By integrating the NVMulator into a framework, instead of just providing



40 S. Tamimi et al.

Fig. 2. NVMulator!t micro-architecture.

a stand-alone hardware module as has been done in prior work, we can lever-
age all of the existing TaPaSCo functionality and design automation to enable
productive research into NDP with NVM more quickly.

3.1 NVMulator Micro-Architecture

Figure 2 shows the micro-architecture of NVMulator, which is designed to emulate
read/write access latencies. This module is equipped with an AXI4-Slave inter-
face that receives read/write requests from the FPGA logic, an AXI4-Master
interface that forwards these requests to the DDR memory controller, and a
controlling interface. For read requests, the module injects latency into the
read response, in accordance with the host-specified latency. Similarly, for write
requests, the module adds an additional delay to the write response, as deter-
mined by the host. The controlling interface allows the host to manage the NVMu-
lator functionalities during operation without requiring the stop of execution or
re-synthesis of the design for simple timing parameter changes. The NVMulator
enables the emulation of access latency for emerging NVM technologies, such as
PCM and Spin-Transfer Torque Memory (STT-RAM).

Timing Model. Equation 1 shows the timing model employed in the NVMu-
lator. Upon receiving a read/write request (r/w) on the address channels, the
NVMulator module forwards this request to the DDR memory controller and
records the request receipt (Timereceived). Once the response from the DDR
is obtained, NVMulator logs the completion time of the request(Timecompleted).
Subsequently, the control unit computes the expected latency for the request,
taking into consideration the burst size (Burst_size) and the host-specified
delays per beat for read and write requests (Delaybeat). Then, the control
unit determines the delay to inject (Delayinject), which represents the differ-



NVMulator 41

Fig. 3. Integration of NVMulator module into the software and hardware stacks of the
TaPaSCo framework

ence between the expected time for the request and the actual response time
from the DDR memory.

DelayNVM(r/w) = Burst_size(r/w) + Delaybeat(r/w)
DelayDDR(r/w) = Timecompleted(r/w) − Timereceived(r/w) (1)

Delayinject(r/w) = DelayNVM(r/w) − DelayDDR(r/w)

3.2 TaPaSCo Integration

TaPaSCo is an open-source hardware/software framework [13] that facilitates
the integration of FPGA-based accelerators into heterogeneous computing sys-
tems. The goal of TaPaSCo is to provide a flexible and scalable framework for
both expert and non-expert FPGA users. It supports a wide range of FPGA
platforms, including high-performance PCIe-based platforms with large FPGA
devices, such as data center AU280 and AU250 FPGA or Versal cards, small
embedded Zynq platforms like Xilinx ZC702 and ZC706, and Amazon AWS F1
instances with FPGA accelerators.

TaPaSCo comprises an automated System-on-Chip (SoC) design generator
and an Application Programming Interface (API). The SoC design generator
enables the construction of a pool of Processing Elements (PE) with the periph-
eral module to interface with user applications. The API provides a software



42 S. Tamimi et al.

interface for easily controlling the implemented accelerators. Users can imple-
ment their custom hardware accelerators (i.e., PEs) and seamlessly use them
across various supported platforms. TaPaSCo also provides optional functional-
ity through plugins, referred to as features, which may not be supported by all
platforms. These features are configurations that must be set during the design-
building process. For example, users can easily enable the use of High Bandwidth
Memory (HBM) RAM interfaces or network interfaces on supported devices. In
this work, we aim to extend TaPaSCo with an NVMulator as a feature in PCIe-
based platforms. In the following, we will explain the integration of the emulator
into the TaPaSCo framework in both the hardware and software stack.

Hardware-Side. Figure 3 shows the SoC architecture of TaPaSCo on a PCIe-
based FPGA platform that includes a PCIe controller, memory controller,
TaPaSCo status module, DMA-engine, control and data buses, interrupt con-
troller, and pool of PEs. The PCIe controller provides communication between
the hardware and host via the PCIe bus. The memory controller, which utilizes
the AMD/Xilinx Memory Interface Generator (MIG) IP core, provides an inter-
face to the off-chip device memory, such as DDR. The TaPaSCo status module is
responsible for storing hardware information, including mapped addresses, and
the DMA-engine manages PCIe-DMA transfers between the host memory and
device memory. The control bus enables the host to control FPGA modules and
the data bus enables PEs and DMA-engine to access device memory. The inter-
rupt handler collects signals raised by the hardware modules and forwards them
to the host API of TaPaSCo. PEs are custom hardware accelerators, which can
be implemented in either Hardware Description Language (HDL) or by High-
Level Synthesis (HLS), and are responsible for executing applications on the
hardware. It is essential to design and implement PEs with a so-called T-shape
architecture compatible with TaPaSCo, featuring three interfaces: control, inter-
rupt, and data interfaces. The control and interrupt interfaces enable the host to
manage the PE, while the data interface provides PE access to off-chip memory.
As shown in Fig. 3, the NVMulator has been integrated into the TaPaSCo SoC. To
provide runtime control of the NVMulator by the host, the module’s controlling
interface is connected to the control bus, which allows the host to manage it via
the software interface of TaPaSCo. To enable the module within the design, it is
necessary to include --features ’NVMmulator enable: true’ flag during the TaPaSCo
building process as follows:

tapasco compose [PE x 1] @ 100 MHz
--platforms AU280
--features "NVMulator {enable: true}"



NVMulator 43

Software-Side. The TaPaSCo software interface consists of an API and kernel
module. The API is based on a task-parallel model, which involves decomposing
computations into discrete tasks that can be independently executed on hard-
ware accelerators. The kernel module, known as the TaPaSCo Loadable Kernel
Module (TLKM), communicates with the device using ioctl commands. As shown
in Fig. 3, the nvMulator function has been integrated into the software layer hier-
archy. When the API call invokes this function, it triggers the corresponding
functions in the kernel, allowing users to modify the control registers of the
NVMulator in the hardware. This approach enables on-the-fly configuration of
the NVMulator, eliminating the need for design alterations to accommodate var-
ious types of NVM during experimentation. Figure 4 presents a C++ example
utilizing the nvMulator() function call within the user program. This function call
requires three parameters: read_latency and write_latency in a number of clock
cycles, and an NVM_mode that accepts values of either 0 or 1 to disable or
enable the NVMulator functionality.

Fig. 4. Example of using the nvMulator() function call in the C++ API of TaPaSCo

4 Experimental Setup and Evaluation

To evaluate the accuracy of the emulator, we built a TaPaSCo design on an
AMD/Xilinx Alveo U280 FPGA card, which is connected to a host through a
PCIe Gen3 interface with 16x lanes. The host is an ARM Neoverse N1 System
Development Platform (N1-SDP). Furthermore, we have developed a rudimen-
tary block device driver to facilitate the utilization of the FPGA as a storage
device. Throughout the experiments conducted in this study, we have com-
pared the measured latency and throughput values to the reported values for
OptaneDC, as presented in [11].



44 S. Tamimi et al.

Fig. 5. Layout of the NVM storage built on the AU280.

Figure 5 shows the floorplan of the AU280, which includes the PCIe con-
troller, MIG, TaPaSCo related modules, and NVMulator. This design is synthe-
sized using Xilinx Vitis 2022.2. As reported in Table 1, the NVMulator occupies
less than 0.6% of the available resources and logic resources. Thus, the remaining
portion of the design provides ample space for the integration of the actual NDP
processing units.

In the following, we evaluate the effectiveness of the proposed methodology
by measuring the on-device latency and its performance as a persistent storage
when executing real-world applications. As actual Optane devices are no longer
commercially available, we gauge the accuracy of our emulation by using the
measurements reported in [11], on an Intel server platform, as a reference base-
line. For simple I/O-dominant benchmarks (latency, throughput), our emulation
can be quite accurate. For more complex benchmarks (e.g., database workloads),
the differences in the underlying host machines become more apparent, but our
emulator stills stays within 2x of the original.

4.1 Latency

In the first experiment, our objective was to assess the random read and write
latency of single cache-line sized (64B) accesses to the emulated NVM. To this
end, we employed a custom hardware module to generate such accesses and
an Integrated Logic Analyzer (ILA) [10] to accurately measure each access
latency. The measured read and write latencies for the NVM emulator, and



NVMulator 45

Table 1. Resource utilization of the NVM storage on AU280

Module name LUTs Registers BRAM

Available resources 1303680 2607360 2016
NVMulator 0.54% 0.19% 0.42%
Memory controller 1.54% 0.93% 1.26%
DMA-engine 0.88% 0.68% 0.74%
PCIe controller 3.09% 1.7% 3.13%

Fig. 6. Cache line sized (64B) read and write latency comparison between the
OptaneDC [11] and NVMulator

the OptaneDC are illustrated in Fig. 6. The results reveal that the NVMulator is
capable of emulating the read access latency of the OptaneDC with a precision of
0.62% of the target latency (i.e., 305 ns [11]). Similarly, the NVMulator emulates
the write access latency with an accuracy of 1.7% of the target latency (i.e., 94 ns
[11]). These findings indicate that our proposed approach effectively emulates
access latency in close proximity to the intended objective.

4.2 FIO Bandwidth

In this experiment, we aimed to assess NVMulator when used as storage for
filesystem-managed data by using the well-known Flexible I/O (FIO) tool [1]
for benchmarking. This tool enables us to generate practical I/O traffic on the
storage device. To achieve this, we configured the FIO tool to create workloads
using the sync ioengine for random read and write accesses. The generated work-
load comprised a 512 MB file size per thread and a block size of 4KB. We ran
this experiment by varying the number of active threads between one and four,
and executed fsync() following each write request to the storage, ensuring that
the written data was not delayed. For the underlying file system, we employed
Ext4, which is a widely used Linux file system.



46 S. Tamimi et al.

Fig. 7. A FIO 4 KB random read and write bandwidth comparison between the
OptaneDC [11] and NVMulator

Figure 7 shows the results of this experiment in comparison to the OptaneDC
for random read and write operations. As expected, the NVMulator effectively
emulates the OptaneDC under practical I/O traffic generation conditions. We
further extended this experiment for sequential read and write operations. To
this end, we expanded our block device driver to support memory coalescing,
enabling the combination of sequential accesses into a single, larger transaction.
The outcomes of this experiment are shown in Fig. 8. As expected, the NVMulator
effectively emulates both sequential and random access operations.

4.3 Database Application

One of the key advantages of the proposed methodology is its capacity to facil-
itate easy and seamless integration of emulated NVM into a given system,
thereby allowing users to execute applications on it. NVM has demonstrated
benefits in database applications, serving as both persistent and computational
storage capable of managing database operations through NDP [2,21,22]. To
demonstrate the ease of integrating NVMulator for this use-case, we will examine
the usage of the emulated NVM as persistent storage for a popular key-value
database system. The database system employed here is RocksDB [8], which is
an embedded key-value store designed by Facebook/Meta. In order to assess the



NVMulator 47

Fig. 8. A FIO 4 KB sequential read and write bandwidth comparison between the
OptaneDC [11] and NVMulator

performance of the suggested methodology, we conduct an experiment utilizing
the db_bench tool. This involves executing the fillrandom command with a key
and value size of 20B and 100M, respectively, while processing 10 million records
on RocksDB V5.4.

Figure 9 shows the measured throughput of the number of operations while
executing db_bench benchmark for the Ext4 file system. The NVMulator, as demon-
strated in the figure, effectively manages read-and-write accesses to the storage
device with a similar behaviour as the OptaneDC modules. It is important to
acknowledge that the block device driver employed in this research is a simplified
version, lacking the comprehensive buffering and caching functionalities present
in existing drivers, such as the NVMe block device driver and that the server
used for the AU280 and the ones used by the authors of [11] are quite different
(e.g. 24 cores compared to 4). However, the raw performance of the block driver
is only secondary for this experiment, which aims at accurate emulation of NVM
timing behavior, specifically for OptaneDC. As shown here, that can be achieved
even without optimizing the block driver further.



48 S. Tamimi et al.

Fig. 9. A comparison of RocksDB throughput while executing db_bench on emulated
NVM and OptaneDC. Note that the Optane and AU280 measurements were performed
on two different host machines. For this more complex workload, the differences in
host machines become more dominant, but the emulation still stays within 2x of the
measurements reported in [11].

5 Conclusion

We introduce NVMulator, an open-source easy-to-use NVM emulator for FPGAs,
which has been integrated into the TaPaSCo framework to enable the emu-
lation of NVM access latencies using off-the-shelf DRAM memories. Our app-
roach enables users to effortlessly emulate various types of NVM, including PCM
and STT, while also incorporating their accelerators into FPGA designs. Fur-
thermore, the NVMulator module can be easily configured through the TaPaSCo
API, providing users with the flexibility to modify the emulator’s configuration
and switch between different NVM types without requiring a complete redesign
and re-synthesis of the system. Our evaluation examines both file-system and
database access patterns and shows tight accuracy of our emulation for I/O-
dominant benchmarks, with the emulator staying within 2x of accuracy even for
more complex database workloads. It is thus suitable to support further work
on NVM-based Near Data Processing architectures.

Acknowledgment. The authors would like to thank the anonymous reviewers for
their valuable comments. This research was funded by the German Research Founda-
tion (DFG) as project #419942270 neoDBMS.

References

1. Axboe, J.: Fio tool source code. https://github.com/axboe/fio. Accessed 16 Dec
2021

2. Bernhardt, A., Tamimi, S., Stock, F., Vinçon, T., Koch, A., Petrov, I.: Cache-
coherent shared locking for transactionally consistent updates in near-data pro-
cessing DBMS on smart storage. In: EDBT, pp. 2–424 (2022)

https://github.com/axboe/fio


NVMulator 49

3. Bock, S., Childers, B.R., Melhem, R., Mosse, D.: Hmmsim: a simulator for
hardware-software co-design of hybrid main memory. In: 2015 IEEE Non-Volatile
Memory System and Applications Symposium (NVMSA), pp. 1–6 (2015)

4. Do, J., Kee, Y.S., Patel, J.M., Park, C., Park, K., DeWitt, D.J.: Query processing
on smart SSDs: opportunities and challenges. In: Proceedings of SIGMOD, p. 1221
(2013)

5. Duan, Z., Liu, H., Liao, X., Jin, H.: HME: a lightweight emulator for hybrid
memory. In: 2018 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1375–1380. IEEE (2018)

6. Eilert, S., Leinwander, M., Crisenza, G.: Phase change memory (PCM): a new
memory technology to enable new memory usage models (2011)

7. Embedded Systems and Applications Group, TU Darmstadt: Tapasco on Github.
https://github.com/esa-tu-darmstadt/tapasco

8. Facebook: Rocksdb (2017). http://rocksdb.org
9. Hoefflinger, B.: ITRS: the international technology roadmap for semiconductors.

In: Hoefflinger, B. (ed.) Chips 2020, pp. 161–174. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23096-7_7

10. Xilinx Inc.: Vivado design suite user guide: programming and debugging (UG908).
Technical report, Xilinx Inc. (2021). https://docs.xilinx.com/r/en-US/ug908-
vivado-programming-debugging/ILA

11. Izraelevitz, J., et al.: Basic performance measurements of the intel optane DC
persistent memory module. arXiv preprint arXiv:1903.05714 (2019)

12. Kim, S., Oh, H., Park, C., Cho, S., Lee, S.W., Moon, B.: In-storage processing of
database scans and joins. Inf. Sci. 327, 183–200 (2016)

13. Korinth, J., Hofmann, J., Heinz, C., Koch, A.: The TaPaSCo open-source toolflow
for the automated composition of task-based parallel reconfigurable computing
systems. In: Applied Reconfigurable Computing (2019)

14. Lee, T., Kim, D., Park, H., Yoo, S., Lee, S.: FPGA-based prototyping systems for
emerging memory technologies. In: 2014 25nd IEEE International Symposium on
Rapid System Prototyping, pp. 115–120 (2014)

15. Lee, T., Yoo, S.: An FPGA-based platform for non volatile memory emulation.
In: 2017 IEEE 6th Non-Volatile Memory Systems and Applications Symposium
(NVMSA), pp. 1–4 (2017)

16. Omori, Y., Kimura, K.: Performance evaluation on NVMM emulator employing
fine-grain delay injection. In: 2019 IEEE Non-Volatile Memory Systems and Appli-
cations Symposium (NVMSA), pp. 1–6 (2019)

17. OpenSSD Project: COSMOS Project Documentation (2019). http://www.
openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources

18. Peng, I.B., Gokhale, M.B., Green, E.W.: System evaluation of the intel optane byte-
addressable NVM. In: Proceedings of the International Symposium on Memory
Systems, pp. 304–315 (2019)

19. Poremba, M., Xie, Y.: NVMain: an architectural-level main memory simulator for
emerging non-volatile memories. In: 2012 IEEE Computer Society Annual Sympo-
sium on VLSI, pp. 392–397 (2012)

20. Salamat, S., Haj Aboutalebi, A., Khaleghi, B., Lee, J.H., Ki, Y.S., Rosing, T.:
Nascent: near-storage acceleration of database sort on SmartSSD, FPGA 2021,
pp. 262–272. Association for Computing Machinery, New York (2021). https://
doi.org/10.1145/3431920.3439298

https://github.com/esa-tu-darmstadt/tapasco
http://rocksdb.org
https://doi.org/10.1007/978-3-642-23096-7_7
https://docs.xilinx.com/r/en-US/ug908-vivado-programming-debugging/ILA
https://docs.xilinx.com/r/en-US/ug908-vivado-programming-debugging/ILA
http://arxiv.org/abs/1903.05714
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
http://www.openssd-project.org/wiki/Cosmos_OpenSSD_Technical_Resources
https://doi.org/10.1145/3431920.3439298
https://doi.org/10.1145/3431920.3439298


50 S. Tamimi et al.

21. Tamimi, S., Stock, F., Koch, A., Bernhardt, A., Petrov, I.: An evaluation of using
CCIX for cache-coherent host-FPGA interfacing. In: 2022 IEEE 30th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 1–9 (2022)

22. Vinçon, T., et al.: Near-data processing in database systems on native computa-
tional storage under HTAP workloads. Proc. VLDB Endow. 15(10), 1991–2004
(2022). https://doi.org/10.14778/3547305.3547307

https://doi.org/10.14778/3547305.3547307

	NVMulator: A Configurable Open-Source Non-volatile Memory Emulator for FPGAs
	1 Introduction
	2 Storage Technologies and Related Work
	2.1 NVM Storage Technologies
	2.2 Related Work

	3 Proposed Approach
	3.1 NVMulator Micro-Architecture
	3.2 TaPaSCo Integration

	4 Experimental Setup and Evaluation
	4.1 Latency
	4.2 FIO Bandwidth
	4.3 Database Application

	5 Conclusion
	References




