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ABSTRACT
The performance and scalability of modern data-intensive sys-
tems are limited by massive data movement of growing datasets
across the whole memory hierarchy to the CPUs. Such traditional
processor-centric DBMS architectures are bandwidth- and latency-
bound. Processing-in-Memory (PIM) designs seek to overcome
these limitations by integrating memory and processing function-
ality on the same chip. PIM targets near- or in-memory data pro-
cessing, leveraging the greater in-situ parallelism and bandwidth.

In this paper, we introduce pimDB and provide an initial compari-
son of processor-centric and PIM-DBMS approaches under different
aspects, such as scalability and parallelism, cache-awareness, or
PIM-specific compute/bandwidth tradeoffs. The evaluation is per-
formed end-to-end on a real PIM hardware system from UPMEM.
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1 INTRODUCTION
Motivation. Modern data-intensive systems face exponentially in-
creasing data sizes [2, 19], while workloads become both compute-
and data-intensive. The low data-locality and present computer
and system architecture require massive transfers of large datasets
across the whole memory hierarchy. As a result, systems and al-
gorithms become bandwidth- or latency-bound, yet bandwidth is
scarce and latencies are not improving. Indeed, memory is getting
colder as over the last two decades, DRAM capacity has improved
128×, bandwidth 20×, while latencies only 1.3× [12] and it takes
several hundred CPU cycles to access it [20]. Performance, scala-
bility or energy consumption and ultimately the degree to which
modern many-core, main-memory systems are economical [10, 13]
are bounded by data movement given the underlying phenomena
such as the von Neumann bottleneck, Dennard scaling or the Mem-
ory Wall. Data transfers stall processing as they are performed over
a slow and energy-hungry off-chip memory bus with limited width.
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Yet, the memory latencies are high and not improving, while the
cache efficiency is low as cached data cannot be reused due to the
poor data locality. Furthermore, today’s computer architectures
and programming models are processor-centric and data-to-code,
aggravating matters as they treat memory and storage as passive
components and mandate that data is transferred across the mem-
ory hierarchy to the CPUs, to be processed there.

Processing-In-Memory (PIM) is a general and well-known con-
cept [4–6, 11, 14, 15, 17, 18, 24] that describes the ability to execute
operations within the memory or on some processing element
located near the physical memory. Thus, memory turns into an ac-
tive/computational component, yielding a shift towards code-to-data
paradigms and data-centric architectures, where operations are exe-
cuted in or near the physical data location. This way, data transfers
are performed in-situ, and off-chip data movement along the critical
path up to the host CPU is significantly reduced. Prior approaches
[5, 6, 14, 15, 17, 18, 24] got insufficient momentum due to the less
advanced and less economical manufacturing processes integrating
logic onto DRAM chips with sufficient density and volume, as well
as the limited existence of critical applications or workloads.

Recent advances in novel semiconductor storage technologies,
heterogeneous parallel processors, as well as manufacturing pro-
cesses have significant potential to overcome the limitations of
conventional computers for database use. Several trends support
this observation. Firstly, the virtual memory hierarchy evolves from
passive to active/computational memories on all levels. Secondly,
novel memory technologies emerge, with different organisations
(e.g. 2.5/3D) and interconnect to memory cells that yield signif-
icant chip-level bandwidth that grows with chip density. Thirdly,
novel computational memories host PIM Compute Units (PCU),
e.g., called DRAM Processing Units (DPUs) in the UPMEM architec-
ture. Given the advances in fabrication technology, the number and
the characteristics of PCUs also improve with density [23], yielding
massive compute parallelism. In fact, even today UPMEM reports
8GB DIMMs with 128 DPUs [3] and systems with 2 560 DPUs.
pimDB. In this paper, we present the initial design of our PIM-
memory-capable DBMS engine pimDB as a first step in exploring
the design space of PIM in DBMS-settings. pimDB has been de-
veloped from scratch to target main-memory systems comprising
PIM-capable memories. Our main goal is to compare processor-
centric and data-centric (PIM) DBMS approaches under different
aspects, such as scalability and parallelism, cache awareness in
page layouts, or PIM-specific compute/bandwidth tradeoffs. The
evaluation is performed in an end-to-end manner on a real PIM
hardware system from UPMEM.

Our contributions are as follows:
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• We investigate the impact of different page layouts (NSM, PAX)
on PIM processing and scalability on a real system. We observe
the necessity for custom PIM page layouts.

• We investigate the scale and the different levels of PIM-parallelism.
Our exploration offers insights into the compute/bandwidth
tradeoffs in PIM-processing and calls for compute/transfer inter-
leaving primitives in PIM settings.

• We investigate the effect of the in-situ/PIM memory hierarchy
and configurable PIM data transfers (as opposed to cacheline-
sized transfers) on assumptions in cache-aware processing and
data layouts.

• We investigate PIM allocation strategies, as PIM mandates data/
operation co-placement and partitioning. In this context, we
evaluate the kernel deployment and the PIM invocation overhead.

Organisation. We continue with a brief background on the UP-
MEM PIM architecture (Sect. 2) and introduce the architecture of
pimDB in Sect. 3. We discuss the results of our experimental eval-
uation in Sect. 4 and highlight our lessons learned in Sect. 5 and
draw our conclusions in Sect. 6.

2 BACKGROUND AND RELATEDWORK
Next, we briefly overview exiting PIM infrastructures and approaches.
Architecture of UPMEM PIM Infrastructure. PIM technology
is an emerging computing paradigm that aims to improve perfor-
mance and energy efficiency by combining memory and computa-
tion in a single chip. UPMEM has developed the first commercially
available, general-purpose PIM system that replaces standard DDR4
DIMMs and combines processing elements in the form of DPUswith
DRAM chips to provide large amounts of bandwidth and compute
while being more economical and energy-efficient than traditional
compute systems [3]. A PIM DIMM module (Fig. 1) can reside in
one or more memory channels. Moreover, a PIM DIMM module
comprises two ranks, each of which is equipped with 8 UPMEM
PIM chips. Each chip has 8 DPUs, which can execute instructions
in parallel to memory operations. Individual DPUs have access
to a 64MB DRAM bank, called Main RAM (MRAM), which is also
shared with the host CPU. Furthermore, each DPU has two distinct
local/private memories: a fast cache-like memory, called WRAM,
which is 64KB in size; and an instruction memory (IRAM) that as
big as 24KB. In the current evolution of UPMEM’s PIM technology
(codename P21), the DPUs operate at a clock speed of 350 MHz.
One of the key advantages of UPMEM’s PIM technology is its high
bandwidth. Each DPU can employ a DRAM-DPU bandwidth of up
to 1 GB/s [3]. This is made possible by the direct access to DRAM
and WRAM, eliminating the need for data movement between the
memory and the CPU. Today, a fully equipped PIM system can sup-
port 20 PIM DIMMs, resulting in a total of 2560 DPUs and 160GB
of MRAM.

UPMEM’s PIM system currently coexists with conventionalmem-
ory and is installed alongside the DIMMs in the server. A set of
libraries and tools are provided by UPMEM, allowing developers to
create PIM-enabled applications [22]. The MRAM is conveniently
accessible through a host API, handling serial or parallel CPU-DPU
and DPU-CPU transfers as well as DPU allocations and synchro-
nous or asynchronous DPU invocations.
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Figure 1: Processor- and PIM-centric architectural settings.

The programming model for UPMEM’s PIM system is based
on software kernels written in C and tasklets, which are software
threads that can be executed in parallel by the DPU. The number
of tasklets can only be set at compile time. Furthermore, there are
compile-time options available to fine-tune the stack size of each
tasklet, allowing for optimized WRAM usage. The DPUs WRAM is
shared across all tasklets, however each tasklet operates on its own
WRAM portion. Synchronization across DPU tasklets is performed
by means of a set of synchronization primitives provided by the
UPMEM PIM API. These include semaphores, mutexes, handshakes,
and barriers.

Pre-compiled kernels can then be loaded and invoked on the de-
sired number of allocated DPUs. DPU allocations can range from a
single DPU up to utilizing all available PIM DIMMs. This adaptabil-
ity enables simultaneous execution of different kernels on various
DPUs. Notably, MRAM and WRAM are not shared among DPUs
and no direct DPU-DPU communication mechanisms are available.
These need to be managed by the host CPU.

The upcoming generation of UPMEM’s PIM-enabled memory is
expected to offer several key improvements. One notable improve-
ment is the ability to access the WRAM from the host while the
DPU owns the rank, providing greater flexibility on how data can
be exchanged. Additionally, the DPUs are expected to operate at
faster speeds of 466 MHz and its frequency can be adjusted chip-
by-chip for more efficiency. Another improvement is the addition
of new profiling features through different performance counters,
allowing PIM application developers a more precise evaluation of
their designs and potential optimizations. Finally, these new itera-
tions are expected to be 30% to 40% more energy efficient than the
current generation. These improvements will likely result in faster
and more efficient data processing, making PIM hardware an even
more attractive option for various applications.
Related Work. AxDIMM [9], similar to UPMEM’s PIM-DIMMs,
incorporates specialized hardware directly into memory modules. It
combines a field-programmable gate array (FPGA) andmemory into
a PIM-DIMMmodule, allowing for the execution of customized logic
operations within memory. While UPMEM offers general-purpose
kernels to be run on DPUs, AxDIMM utilizes specific database ac-
celeration (DBA) engines to offload database operations. Notably,
AxDIMM can be used as regular memory interfaced via DDR pro-
tocol without requiring data to be copied from host memory to
device memory first, as is the case with UPMEM’s PIM technology.
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Samsung HBM-PIM [16] is the first to combine high bandwidth
memory (HBM) and optimized AI engines inside each memory
bank, enabling parallel in-memory processing. The authors of [8]
presented an experimental study that compared database SIMD
operators between PIM and existing x86 processors. However, their
study relied on architectural simulators for evaluation purposes.

A thorough assessment of the UPMEM PIM architecture was con-
ducted in [7], revealing promising outcomes in various application
domains. Although initial results of database operations are pre-
sented, the analysis was conducted on a simple input array without
taking page layouts into account.

3 OVERVIEW OF pimDB
pimDB is a new DBMS built from scratch to target main-memory
systems comprising PIM-capablememories. By exploring the design
space of PIM in DBMS settings, pimDB seeks to identify concepts
that are practicable for PIM-settings, as well as new PIM strategies
and optimizations that can improve the performance and scalability
of main-memory systems. One of the key features of pimDB is its
support for multiple page formats, which allows for the evaluation
of their impact on PIM processing. Currently, pimDB implements
two page formats: row-based NSM for frequent transactional pro-
cessing and column-based PAX for analytical workloads. Large
datasets like TPC-H can be bulk loaded and transformed into the
desired page layouts.

Another key feature of pimDB is a novel memory manager (Fig.
1), capable of storing pages in either traditional main-memory
setting or in PIM-setting. In the traditional settings, pages are stored
in pre-allocatedmemory chunks in themain-memory. Alternatively,
pimDB can leverage UPMEM’s PIM technology to store pages in
PIM-enabled memory chips, utilizing the benefits of lower in-situ
latencies, higher in-situ bandwidth, and efficient scalability offered
by PIM processing.

Currently, pimDB supports scans, selections, projections, aggre-
gations, and recordmaterialization strategies for result-set handling.
The operations are either hard-coded into the DB (CPU processing)
or provided as parametrizable kernel functions utilizing schema
embedding, in the case of PIM processing. The parameters of PIM-
invocations in pimDB are transferred to all allocated DPUs during
the invocation process. Typical parameter types comprise schema
information, operation IDs, operation parameters, for example, how
to evaluate predicates, and a page range to consider during process-
ing.

An important property of the PIM hardware in contrast to CPU-
based systems is its dynamic configurability, in terms of:
a) PIM-cache/ WRAM (opposed to fixed-sized L1/L2 caches),
b) DMA transfer-sizes (opposed to cacheline-sized transfers), or
c) level of parallelism (i.e., number of DPU tasklets).
To leverage dynamic configurability, pimDB allows the configura-
tion of these properties for each operation or invocation. Firstly,
compared to traditional CPU-centric system and their fixed caches,
DPUs do not employ caches at all. Instead, they employ low-latency
WRAM in combination with configurable DMA (Direct Memory
Access) transfers, which enables flexibility in adapting to different
transfer sizes, access patterns, operations, or data structures. In
combination with tasklets, both of the above allow interleaving

NSM-Page

NSM-Page

DMA Engine

Tasklet 0

Tuple
Tuple
…

…

Tuple

NSM-Page

NSM-Page

Tasklet N

Tuple
Tuple
…

…

Tuple…

PAX-Page

PAX-Page

DMA Engine

Tasklet 0

…

PAX-Page

…

…

PAX-Page

Tasklet N

M
RA

M
W

RA
M

DPU DPU

Mini
Page

Mini
Page …

Mini
Page

Mini
Page …

Mini
Page

Mini
Page …

Mini
Page

Mini
Page …

Figure 2: PIM’s dynamic configurability and flexible mem-
ory hierarchy result in different ways to leverage scan par-
allelism. NSM scans cache portions of a tuple or multiple
tuples. PAX scans cache portions of one or more mini-pages.

data processing and transfers, which becomes a crucial factor in
designing efficient PIM algorithms.

Secondly, to leverage tasklet-parallelism, pimDB has two distinct
implementations of the scan operation for NSM and PAX [1] (Fig.
2). To this end, the pages stored in the DPU-local memory (MRAM)
are processed by a configurable number of tasklets. Each tasklet
operates on its ownWRAM space to load and cache data or to store
temporary or intermediate results. In NSM, tasklets first load tuples
from NSM pages (MRAM) to WRAM before continuing process-
ing. The amount of data to be cached in pimDB is configurable,
allowing for the caching of either partial tuples or multiple tuples
simultaneously, and can be modified to suit various operations.
In PAX, tasklets load and cache portions of a single mini-page or
multiple mini-pages. If a predicate evaluates a single attribute, the
corresponding mini-page is cached first. When additional attributes
of a tuple need to be accessed, only the necessary portions of the
mini-pages are loaded and cached, minimizing data movement to
the DPU. The design goal is to achieve a compute/transfer balance:
even though DPU bandwidth may be sufficient, DPUs may easily
become compute-bound, not just due to the PIM-operation but also
through I/O wait times, for unnecessary data.

With pimDB we seek to provide promising directions for re-
search on main-memory systems and PIM technology. By exploring
the design space of page formats, memory management strategies,
operations and algorithms, data structures, and workloads, we plan
to gain new insights into how to optimize PIM processing for opti-
mal performance in DBMS.

4 EXPERIMENTAL EVALUATION
Experimental Setup. The experiments are conducted on a server-
grade UPMEM system with two x86 CPU sockets as two NUMA
nodes, equipped with Intel Xeon Silver 4110 CPUs and 125GB of
DRAM. Each CPU has 8 cores and supports two threads per core, re-
sulting in a total of 32 simultaneous threads (SMT). Furthermore, the
system is equipped with 20 PIM-enabled UPMEM memory DIMMs
(Codename P21) resulting in up to 2560 DPUs (128 DPUs/dual rank
DIMM) and 160GB of memory (64MB per DPU). In our setup, some
faulty DPUs reduced the usable computational power to a total of
2496 DPUs and the available memory to 156GB. Our evaluation
relies on TPC-H datasets [21] with different scale factors.
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Figure 3: Performance of PIM-only and CPU-only execution
in large scalings. Themassive PIMparallelismand bandwidth
yield significant improvements.

Experiment 1: PIM vs. CPU. We open the evaluation with a
general experiment investigating the impact of PIM scaling and
parallelism. To investigate the effects, we execute a scan-and-select
operation with both page layouts on PIM and the CPU, varying
dataset size (SF) and increasing threads/DPUs utilized during ex-
ecution. The selection predicate evaluates a single attribute (50%
selectivity) on the TPC-H orderline table. We use 11 software
threads (Tasklets) to fully utilize the DPU pipeline. For CPU execu-
tion, we implemented the use of CPU affinity bit masks to assign
specific cores to individual threads, thereby ensuring thread-core
pinning. Experiments with up to 8 threads are assigned to a single
CPU, up to 16 threads assigned to both CPUs without SMT enabled
and for 17 and more threads, SMT is enabled.

The performance differences between a PIM-only and a CPU-
only execution for SF 30 and SF 80 are shown in Fig. 3. PIM provides
excellent scaling up to 2496 DPUs for both page layouts with a per-
formance improvement of up to 68× using NSM and 62× using PAX.
The CPU only scales well up to 8 threads, and more threads result
in smaller improvements, in some cases, even worse performance.

Additionally, to evaluate the performance of a single PIM mem-
ory chip up to multiple PIM DIMMs, we repeated the experiment
for SF 1, allowing the data to fit into the memory assigned to 8
DPUs/single chip (Fig. 4). We observe that PIM scales almost lin-
early up to 256 DPUs. Beyond that (past 512 DPUs), the PIM/DPU
invocation cost starts to impact the scalability, outweighing the
data transfer savings at 2048 DPUs. However, the number of pages
to process per DPU is tiny in these cases, resulting in dominating
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Figure 4: Scan-and-Select performance with varying levels
of parallelism in CPU-only and PIM settings: the top X-axis
shows CPU Threads, while the bottom X-axis depicts the
number of DPUs. Minimizing data movement is crucial to
utilizing PIM parallelism. PIM scales almost linearly up to
256 DPUs, beyond that invocation costs impact scalability.

invocation costs, which involve transferring invocation parame-
ters to all allocated DPUs in order to invoke the specific operation
within the loaded kernel.

High levels of DPU and tasklet-parallelism and scalability are
achievable for parallelizable DB operations. Despite NSM perform-
ing worse than PAX, it scales equally well for the given operation.
The high PIM-DRAM bandwidth (1GB/s per DPU) and the com-
bined compute capabilities allow a single PIM DIMM to outperform
the CPU execution.
Insights: DBMS operations running in PIM settings can improve per-
formance over traditional CPU-based settings. In particular this is
the case for highly parallelizable and size-reducing PIM operations
on partitioned datasets, due to tasklet-parallelism and PIM/DPU-
scalability. Even though a single DPU is inferior to a CPU core,
PIM scales more efficiently than CPU-based systems, as data is
processed in-situ, reducing costly data transfers to the CPU. Addi-
tionally, large parallelizable workloads benefit from PIMs higher
parallelism, as multiple operations are performed simultaneously
on different parts of the data, avoiding CPU resource contention.
Even though PIM/DPU invocations incur an overhead, it is very low
for many DPUs (4ms with 2048DPUs) and will become negligible
for larger datasets and more demanding operations.
Experiment 2: Page Formats. The in-situ memory hierarchy is
an essential aspect of PIM architectures. For efficient processing, it
is crucial to minimize the movement and optimize data placement
across different memory levels. This in turn is essential for fully
utilizing the PIM/DPU- and tasklet-parallelism.

To compare the impact on PAX and NSM, both of which have
different characteristics regarding cache utilization, we perform a
scan-and-select operation in PIM (64DPUs, 11 Tasklets) and the CPU
(32 SMT threads) settings. The selection predicate evaluates a single
attribute with a selectivity of 50%, row-wise in NSM, column-wise in
PAX. We report the instructions per cycle (IPC) as a rough measure
of the efficiency of the compute/transfer interleaving during DPU
execution. Notably, the maximum number of instructions that can
be executed per cycle per DPU is limited to 1. PAX performs as
expected (Fig. 5.A), reducing costly transfers from main-memory
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to the CPU and DPU WRAM, resulting in a faster execution than
NSM. Interestingly, even in PIM-settings NSM is I/O-bound with
IPC<0.58, while PAX is compute-bound with IPC>0.96 (Fig. 5.B).

Based on this observation, we move on to investigate how dif-
ferent DMA transfer sizes affect PIM performance opposed to
cacheline-sized (64B) transfers, given the dynamic configurabil-
ity of PIM. To evaluate the selection predicate, the attribute must
be loaded from MRAM to WRAM first.

In NSM, this process leads to read amplification as unnecessary
data of the tuple is transferred. To mitigate this issue, pimDB can
configure DMA transfer sizes (i.e., 32B, 64B, 128B) which allow for
the loading of larger chunks from MRAM to WRAM in a single
DMA transfer. This effectively reduces the number of DPU cycles
needed to initiate DMA transfers, and improves DPU utilization
compared to multiple consecutive transfers with smaller sizes. This
is natural given the DRAM latency characteristics of the MRAM.
In the current experiment, where a tuple is 64B in size but only
4B of the tuple are necessary for the predicate evaluation, using
32B DMA transfer sizes demonstrates the lowest read amplification
and achieves the best DPU utilization (Fig. 5.B). On the other hand,
employing 64B sized DMA transfers leads to worse utilization since
transferring an additional 32B of the tuple only increases read
amplification and I/Owait time even given the high DPU bandwidth.
Furthermore, 128B sized DMA transfers reduce the frequency of
DMA invocations and enable the loading of two tuples at once
into WRAM. This results in increased DPU utilization compared
to 64B DMA transfers, but worse than 32B. However, minimizing
data movement performs better than reducing the number of DMA
invocations for the PIM scan-and-select operation.

PAX offers an inherent advantage in evaluating scan predicates
on single attributes without encountering read-amplification issues.
DPUs can operate on the data residing inWRAM for longer duration
before needing to load new portions of the mini-page from MRAM.
This reduces the frequency of data loading and enhances overall
performance by enabling extended processing times without the
need for frequent MRAM accesses. The impact of different DMA
transfer granularities is reduced and results in compute-bound
PAX. However, UPMEM expects the next iteration of PIM-enabled
memory to employ DPUs with higher clock frequencies (up to 466
MHz), improving PIM compute power.
Insights: Data placement and the mitigation of I/O wait times are
essential for fully utilizing the PIM/DPU- and tasklet-parallelism.
Given the relatively weak DPU compute capabilities relative to the
high in-situ bandwidth (1GB/s per DPU) we observe a PIM-specific
compute/bandwidth tradeoff.With configurable cache-like memory
(WRAM), PIM offers more flexibility than CPU-based cache-aware
processing, allowing workload-tailored configurations of memory
and transfer units (DMA). We expect PIM’s dynamic configuration
(and adaptivity) to influence the design of new PIM-tailored data
structures and operations and the transition to invocation-based
configurations.
Experiment 3: Partitioning and data placement are critical
for harnessing the performance and scalability in PIM systems
to ensure shared-nothing style PIM/DPU executions. Noticeably,
the number of DPUs and the combined compute and bandwidth
capabilities are proportional to the allocated (and the absolute)
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Figure 5: (A) Impact of page layouts on scan-and-select per-
formance: PAX improves performance by reducing mem-
ory transfers in CPU and PIM settings. (B) DPU utilization:
NSM is I/O-bound while PAX is compute-bound. Tuning PIM
(DMA) transfer sizes improves NSM DPU utilization.

memory volume. To investigate the effect, we now execute a scan-
and-select operation varying the number of DPUs and the data size
(the scale factor).

When increasing the data size and the number of DPUs at the
same rate (Fig. 6.A), constant performance is achievable, as the
amount of data to be processed per DPU does not change. By keep-
ing the data size fixed and distributing it evenly across an increasing
number of DPUs (Fig. 6.B), the performance increases linearly as
the amount of data to process per DPU decreases linearly.
Insight: With increasing data volumes, a PIM system can scale
along while still providing constant performance. Furthermore,
distributing the data across all available DPUs provides the highest
compute and bandwidth capabilities and the best performance.
However, when lowering data sizes, the PIM invocation cost may
outweigh the data transfer savings, as indicated in Exp. 1, Fig. 4.
Experiment 4: Tasklet-parallelism. To fully saturate the ex-
ecution pipeline of individual DPUs, it is necessary to partition
the workload across multiple UPMEM tasklets. Tasklet-parallelism
improves compute- and bandwidth-bound operations. However,
data-intensive operations that saturate the PIM bandwidth will
not benefit from additional tasklets. To demonstrate the impact of
tasklet-parallelism, we execute a scan-and-select operation (50%
selectivity) on 64 DPUs with SF 8, varying the number of tasklets
and increasing the DMA transfer granularity. We also evaluate
their impact on the IPC. We opt for 64 DPUs (single DPU Rank) to
minimize the impact of invocation cost.

PAX can saturate the DPU at 12 or more tasklets, and increasing
the DMA transfer size does not affect the overall throughput (Fig. 7).
NSM can saturate the DPU at nine tasklets for 32B and six tasklets
for 64B and 128B DMA transfers. Interestingly, despite increasing
the bandwidth requirement of PAX with larger DMA transfers, the
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Figure 6: Impact ofmemory allocation and data placement on
scalability: constant ratios DPUs per Unit of Volume possible,
yielding constant performance of parallelizable operations
with growing data sizes.

DPU utilization remains unchanged, substantiating DPUs compute-
boundness (Fig. 7.B).
Insights: Tasklet-parallelism efficiently interleaves data-transfer
times and processing with other tasklets. Tasklets can interleave
data movement and processing exceptionally well for compute-
bound operations. Yet, they also help utilizing the available band-
width more efficiently in data-intensive operations. However, there
is a tradeoff between the number of tasklets and available WRAM.
An overly high number of tasklets reduces the amount of available
WRAM for each tasklet, as tasklets operate on their own portion of
the fast but limited WRAM (64KB), which itself is shared amongst
all tasklets.
Experiment 5: Projection and Aggregation. To further eval-
uate the capabilities of PIM, we increased the data and compute
intensity by introducing an additional aggregation on top of a scan-
and-select operation. We vary the intensity through the number
of aggregation attributes, thereby increasing the projectivity. With
50% selectivity, we execute the aggregation on 64 DPUs with 11
tasklets. Additionally, the DMA transfers are configured to be 32B
in size. Tasklet-parallelism should allow bandwidth-bound DPUs to
interleave additional computing effort without significantly impact-
ing the performance. Compute-bound operations, however, should
efficiently interleave increased data movements. Our results are
shown in Fig. 8.

In NSM, we cache tuples in WRAM before continuing with the
predicate evaluation and aggregation. In the current setting, NSM
can transfer and cache all required attributes through a single DMA
transfer, which does not increase the data intensity for larger projec-
tions. Furthermore, the tasklets efficiently interleave the additional
compute cost introduced by the aggregation, yielding better DPU
utilization and robust performance in larger projections (Fig. 8.B).
In PAX, the number of attributes to aggregate does influence the
data intensity. We cache portions of the required mini-pages in
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Figure 7: Tasklet-parallelism efficiently interleaves transfer
times and computation with other tasklets. Increasing the
number of tasklets with well-chosen DMA transfer sizes im-
proves DPU utilization and performance.

advance in WRAM. However, the tasklets can effectively interleave
the increased data movements, visible as steady IPC in Fig. 8.B. Yet,
the aggregation performance of PAX degrades with increased pro-
jection (Fig. 8.A). PAX is already compute-bound, and the additional
aggregation-costs slow down the execution further.
Insight: Interleaving data transfers and computation with tasklet-
parallelism enables efficient data processing in PIM. However, bal-
ancing compute and bandwidth per operation is a challenging re-
search question that influences the optimal design of operations.
To optimize PIM applications, profiling will be essential, which
UPMEM supports with host-side and DPU profiling tools.
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Experiment 6: Materialization. Effective result-set handling and
materialization strategies are critical to fully leveraging the advan-
tages of PIM systems. Choosing a suitable strategy requires careful
consideration of workload characteristics, query pipelining, mem-
ory capacity, compute/bandwidth trade-offs, data access patterns,
and PIM-CPU transfer costs. The amount of memory available
per DPU is limited and should be taken into account. Early mate-
rialization strategies can quickly consume available memory for
temporary or intermediate results, which need to be reserved ex-
plicitly in advance. Late materialization can reduce memory usage
by materializing only the tuple locations/positions. In our setup, we
chose to create a positional bit-vector per page (one bit per tuple)
and set individual bits depending on the predicate evaluation. To
demonstrate the compute/bandwidth trade-off between PAX and
NSM during early and late materialization, we execute a scan-and-
select operation with varying selectivities (Fig. 9.A). Initially, we opt
64 DPUs to reduce the invocation overhead. However, we increase
the number of DPUs, while maintaining a selectivity of 50% (Fig.
9.B), to investigate the impact on scalability. Both experiments are
performed on SF 1 with 11 Tasklets per DPU and a DMA transfer
size of 64B.

The additional compute cost of creating a bit vector can be effi-
ciently interleaved by tasklet parallelization in NSM. PAX, already
being compute-bound, performs worse compared to no materializa-
tion, resulting in a degraded performance of 21,7% at 10% selectivity
and up to 35,9% at 100% selectivity. Both utilize WRAM to cache
the positional bit-vector and reduce slow MRAM transfers. The
bit-vector is flushed using a single DMA transfer once a page is
fully processed.

Our full materialization approach uses pre-allocated and reserved
MRAM memory to store the materialized tuples, reducing the num-
ber of pages that can be stored overall in PIM. The NSM page
layout stores data in rows, making it easy to materialize records
by copying the entire tuple to MRAM. To optimize performance,
each tasklet allocates 64B in WRAM to read and cache an entire
tuple and, if necessary, write the entire tuple in one DMA transfer.
However, writing cached tuples from WRAM to MRAM for ma-
terialization increases the data movement and negatively impacts
bandwidth-bound NSM, leading to decreased performance.

PAX’s column-based storage requires reading from multiple lo-
cations to materialize a tuple, which increases compute and data
movement costs. To mitigate this, we partially cache mini-pages
in WRAM. Furthermore, PAX requires format parsers to identify
attribute types and sizes for constructing a materialized record,
adding to the computation cost. However, even with optimizations,
a full materialization in PAX still results in significantly worse
performance than NSM.
Insight: Despite the performance differences between PAX and
NSM and the materialization strategies presented, scaling is linear
with an increasing number of DPUs (Fig. 9.B). Again, the invocation
cost has a noticeable impact on performance beyond 512 DPUs.
Experiment 7: Kernel deployment and invocation. One of the
key decisions in designing database operations as PIM/DPU kernels
is the choice between using large generalized kernels or small spe-
cialized kernels. Generalized kernels refer to the use of a single DPU
binary than can handle a wide range of instructions and operations,
while specialized kernels involve tailoring the binary to a specific
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performance and scalability. Late materialization (positional
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compute overhead that is interleaved with transfers in NSM,
but visible in PAX, which is compute bound.

task or operation. This trade-off has significant implications on
the limited instruction memory (IRAM), kernel loading times, and
kernel invocation, which are crucial factors in PIM systems.

Limited instruction memory capacity poses a challenge in PIM
architectures, as it restricts the amount of code that can be stored
and executed within a kernel. Large generalized kernels offer the
advantage of versatility, as they can execute multiple task without
the need for binary swapping. This approach simplifies the pro-
gramming model and reduces the overhead associated with kernel
management. However, they introduce a more complex invocation
process. Since the kernel needs to handle various operations, addi-
tional parameters or context information are required for proper
execution. This increases the data transfers during kernel invoca-
tion. On the other hand, specialized binaries archive higher code
density and are tailored to specific tasks or applications, resulting in
reduced instruction memory requirements. The invocation process
is simplified, as the system only needs to provide the necessary
inputs, without the need for additional configuration parameters.

Another factor to consider are the binary loading times, which
incur additional overhead during loading or swapping. Large gen-
eralized kernels require a one-time loading process, reducing the
frequency of binary transfers. This can be advantageous in scenar-
ios where swapping is impractical or time-consuming, especially in
situations where latency is a critical concern. Specialized kernels,
on the other hand, may require more frequent binary loading, as
each task may have its own dedicated kernel. However, the smaller
size of specialized binaries reduces the loading time.

To show the trade-off between large generalized and special-
ized kernels in terms of binary loading times and the invocation
cost, we measured the transfer time of the DPU kernel binary and
the invocation parameters with an increasing number of allocated
DPUs (Fig. 10.A). Moreover, we compare the scan-and-select kernel
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against the larger and more complex materialization kernel to show
the instruction memory (IRAM) utilization (Fig. 10.B).

The cost of transferring invocation parameters in UPMEMs PIM
architecture is remarkably low and ranges from 200us for a sin-
gle DPU up to 3ms for 2048 DPUs. Binary transfer time ranges
from 3.2ms for 1 DPU up to 7.5ms for 2048 DPUs, indicating that
kernel swapping can be performed within reasonable duration.
Compiler size optimization results in compact binaries with re-
duced instruction memory requirements, with 3.8KiB for NSM and
5.6KiB for PAX, for our largest kernel supporting materialization.
The provision of 24KiB of IRAM in each DPU offers ample space for
implementing more complex as well as more generalized kernels.
Insight: Our findings highlight the importance of adaptive kernel
selection for PIM DBMS. By dynamically choosing between larger
generalized kernels and specialized kernels based on the character-
istics of the workload, a balance between versatility and efficiency
is achievable. With pimDB, we plan to explore and leverage this flex-
ibility to adapt to varying computational requirements and achieve
optimal performance in a range of scenarios.

5 LESSONS LEARNED
In the present work, we provide an initial investigation of PIM
for database use on real hardware. UPMEM is one of the first real
systems available in practice, and one that is feature-rich. In general,
there are many open questions regarding the hardware architecture
of PIM systems. How will PIM-capable memories be embedded into
the memory hierarchy? Will they potentially co-exist with passive
memories building a multi-tier main-memories or is it realistic to
assume PIM-only memory? Howwill PIM-memories scale and what
interconnect will they have, especially with view of novel cache-
coherent interconnects such as CXL and protocols like CXL.mem?
(1) In this initial study, we observe novel aspects of PIM. On the

one hand, we observe themassive parallelism that such systems

bring along. On the other hand, we observe that PIM systems
bring different and potentially heterogeneous hardware that
can be dynamically configured potentially for each invocation.
We expect that both properties will have a significant impact
on data structure designs. For example, consider the impact of
transfer units. This paper shows that PIMDMA sizes are dynam-
ically configurable (instead of 64B cacheline-sized) and that this
impacts the PIM operation, the parallelism and materialization
strategies.

(2) The massive PIM parallelism (DPU and tasklet) allows DBMS
operations running in PIM settings to outperform traditional
CPU-based settings for well-parallelizable and size-reducing
operations on partitioned datasets. Additionally, large paral-
lelizable workloads benefit from PIMs higher parallelism, as
multiple operations are performed simultaneously on different
parts of the data, avoiding CPU resource contention.

(3) PIM systems demonstrate efficient scalability to accommodate
evergrowing datasets while maintaining constant performance
for parallelizable and size-reducing operations.

(4) Data placement and mitigating I/O wait times are essential for
fully utilizing the PIM/DPU- and tasklet-parallelism. Given the
relatively weak DPU compute capabilities relative to the high in-
situ bandwidth, we observe a PIM-specific compute/bandwidth
tradeoff. However, balancing compute and bandwidth per op-
eration is a challenging research question that influences the
optimal design of operations.

(5) With configurable cache-likeWRAM, PIM offers more flexibility
than CPU-based cache-aware processing, allowing workload-
tailored configurations of memory and DMA transfer units.
We expect PIM’s dynamic configuration to influence the design
of new PIM-tailored data structures and operations and the
transition to invocation-based configurations.

(6) Tasklet-parallelism efficiently interleaves data-transfer times
and processing with other tasklets. However, there is a tradeoff
between the number of tasklets and available WRAM.

(7) UPMEM’s PIM architecture is well-suited for different execu-
tion modes, given the efficient kernel swapping and invocation
performance as well as ample instruction memory.

6 CONCLUSIONS
In this paper, we introduce pimDB, a PIM-capable main-memory
DBMS. We compare processor-centric to PIM-style basic data pro-
cessing operations. PIM offers very early advantages over the host-
only executions. PIM does not only scale well with the number
of DPUs, it also allows configuring the DRAM transfer sizes and
WRAM usage per invocation, thus optimizing for different data
structures and operation types. PIM invocations may execute in
a shared-noting manner across the DPUs and therefore their effi-
ciency depends on how well they parallelize.
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