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This paper introduces DANSEN, the hardware accelerator component for neoDBMS, a full-stack computational storage system
designed to manage on-device execution of database queries/transactions as a Near-Data Processing (NDP)-operation. The
proposed system enables Database Management Systems (DBMS) to oload NDP-operations to the storage while maintaining
control over data through a native storage interface. DANSEN provides an NDP-engine that enables DBMS to perform both
low-level database tasks, such as performing database administration, as well as high-level tasks like executing SQL, on the
smart storage device while observing the DBMS concurrency control. Furthermore, DANSEN enables the incorporation of
custom accelerators as an NDP-operation, e.g., to perform hardware-accelerated ML inference directly on the stored data.
We built the DANSEN storage prototype and interface on an Ultrascale+HBM FPGA and fully integrated it with PostgreSQL
12. Experimental results demonstrate that the proposed NDP approach outperforms software-only PostgreSQL using a fast
of-the-shelf NVMe drive, and signiicantly improves the end-to-end execution time of an aggregation operation (similar
to Q6 from CH-benCHmark, 150 million records) by ≈10.6×. The versatility of the proposed approach is also validated by
integrating a compute-intensive data analytics application with multi-row results, outperforming PostgreSQL by ≈1.5×.

CCS Concepts: ·Hardware→Reconigurable logic and FPGAs;Hardware-software codesign;Hardware accelerators;
External storage; · Information systems→ Database query processing.

Additional Key Words and Phrases: Near-Data Processing, Computational Storage, FPGA, Database Management Systems.

1 INTRODUCTION

Data movements have become a limiting factor in modern Database Management Systems (DBMS) as they
use traditional (data-to-code) system architectures to process data by triggering massive data transfers. As an
alternative, moving computation close to the storage devices (code-to-data) gains the potential of signiicant
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throughput improvement due to shorter / wide connections of high(er) performance busses. In addition, DBMS are
working on hybrid workloads that combine long-running analytical (reading) transactions/queries and frequent
and low-latency modifying (update) transactions [35]. However, analytical queries also operate on rarely accessed
data that resides on slower łcoldž persistent storage. Operating on cold storage causes massive data transfers
from storage systems in the traditional stack [44].

Oloading computations from the host to the storage device, known as Near-Data Processing (NDP), is used to
save bandwidth and increase performance. Active Disks [1] and Database Machines [12] as a pioneer in this era
were not successful due to I/O boundedness and bandwidth limitations, and the high cost of the special hardware.
However, with modern semiconductor technologies, it is now economical to fabricate combinations of powerful
compute units and storage (e.g., non-volatile memories) close to or co-allocated in the same device (known as
computational storage). Co-allocating computation and storage on the same device results in shorter access latency,
higher bandwidth, and a higher level of parallelism for the internal compute unit (device-internal) compared to the
external one (host-to-device). This is due to the independent channels between the on-device processing element
and storage unit as well as the limited simultaneous access provided by the interconnect, i.e., PCI Express (short:
PCIe). Leveraging the hardware properties and moving computation closer to the storage signiicantly enhances
system performance, as device-internal bandwidth and latency are better than device-to-host. For example, the
shorter access latency between the processing element and the physical storage unit facilitates leveraging the
byte-addressability of novel non-volatile memory to improve further system performance, an approach that is
less eicient when relying on the PCIe interface, which is optimized for bulk transfers. Oloading computation
to storage is even more promising for DBMS systems operating under hybrid workloads, as it reduces resource
contention and prevents performance interference between concurrently running host and device processes.
By executing long-running analytical workloads on cold data, which exceeds the main memory capacity, on
the device, and optimizing the execution of frequent and low-latency update workloads on hot data within
main memory, system eiciency is signiicantly enhanced. This strategy improves performance, minimizes data
transfers, and reduces memory pollution. These trends leverage the way for NDP-capable storage and overcome
limitations of prior approaches like Active Disks or Database Machines. Please see Section 5 for an in-depth
discussion of prior work.

This paper presents DANSEN, the hardware component of neoDBMS [8, 44], which together form an end-to-end

system architecture for accelerating database applications on computational storage through the use of NDP
techniques. The storage solution is PCIe-based and employs NVM, emulated on DRAM, for storage and an
FPGA as the computing unit that handles queries and transactions from DBMS as NDP-operations. The DBMS
is designed to perform NDP-operations on persistent storage to improve database performance while running
hybrid workloads. To enable the DBMS to directly access and store database data on the device, as well as
eicient push-down of NDP-operations to the device, we utilize Native Storage [18, 19, 37], which makes the
DBMS aware of the speciics of the underlying storage medium. The concept of the Native Storage and DANSEN’s
implementation of an Native Storage Interface (NSI) is described Section 3.2.

The oloaded operationswill be executed on anNDP-engine that is comprised of a pool of software-programmable
soft-cores extended with custom hardware that acts as a front-end to the DBMS and interprets the data layout and
concurrency mechanisms of the database. As the front-end required signiicant engineering efort and frequent
changes due to the lack of existing best practices on how to directly integrate NDP into PostgreSQL, a more
lexible software-based implementation was used here instead of hardwired acceleration. For performance, we
leverage up to twenty 64-bit cores working in parallel to feed the NDP back-end with raw data, which then
employs actual hardware-accelerated processing for aggregations or inference. The native storage approach
leverages the byte-addressability of NVM to reduce read-ampliication and improve overall system performance
that would not be possible using page-addressed storage such as Flash. Read ampliication is a phenomenon
characterized by retrieving (much) more data from physical storage than is actually requested by the processing
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component, e.g., by the query executor. For instance, if the executor requests a single record of 100 B, the bufer
manager will load the 8 KiB page containing that record, while the underlying ile-system may load multiple
blocks. Read-ampliication results primarily from introducing levels of indirection, the data-organization or
abstractions such as the block-device interface, ile-systems and ile-based storage.
To evaluate the proposed architecture, we build a prototype of the smart storage system on an AMD / Xilinx

UltraScale+ FPGA, attached in the form of a Xilinx Alveo U280 PCIe board. We extended PostgreSQL 12 with
the capability to perform NDP-operations using the FPGA on the persistent storage, enabling us to conduct a
thorough evaluation of the system performance. The FPGA not only performs computational operations from
database queries, but also directly processes the database internal formats while maintaining the transactional
integrity of the database. This is achieved by creating a transactionally consistent snapshot of the database
on the device and executing the NDP operation against it, thus enabling DANSEN to execute intervention-free
(autonomously) from the host DBMS. Our evaluation shows that DANSEN improves system performance by
decreasing costly data movement and enhancing the degree of computational parallelism. In addition, we use an
ML-inference application from data analytics as an NDP operation to show how easy custom hardware can be
integrated into the back-end pipeline of the proposed NDP-engine. As the NDP back-end is isolated from the
DBMS speciics by the NDP front-end, it just has to deal with streams of raw data.

The novel contributions of this paper are as follows:
(i) We propose a PCIe-based computational storage that enables eicient łpush-downž of the NDP-operation

from the DBMS query engine to the NDP storage device. The interaction between the storage and DBMS is
realized in the form of NSI and so eliminates costly intermediate abstraction layers (e.g., ile systems, block
devices) that are present in traditional DBMS stacks. In addition, we extended the DBMS to handle NDP on
computational storage while running hybrid workloads.

(ii) We propose an NDP-engine architecture that is capable of performing in-situ data processing without any
interaction with the host as an intervention-free NDP-operation. The proposed NDP-engine exploits the
byte-addressable nature of NVM technologies to reduce read-ampliication. The NDP-engine is not only
designed and optimized for NDP-operations but also enables the user to easily integrate custom hardware
and arbitrary software functions.

(iii) We investigate the generality and lexibility of the proposed architecture by the in-depth benchmarking of
a compute-intensive application from the data analytics domain, in an end-to-end scenario (PostgreSQL
DBMS down to FPGA-based hardware).

Note that since DANSEN was developed in an interdisciplinary research project between database researchers
and computer architects, we sometimes have to use a mix of the two diferent communities’ terminologies.
For example, the term łpush-downž from the DBMS research community could be seen to mean łhardware-
accelerationž from the computer architects’ perspective.
This text focuses on a detailed description of the hardware architecture and hardware/software interfaces,

while our previous work in [8, 44] primarily focused on the database architecture and design principles/aspects.
This work thus discusses three key contributions by the DANSEN system: (i) the architecture of an NDP-capable
computational storage along with its implementation of NSI, (ii) the design of a novel hardware-accelerated
NDP engine processing pipeline, and (iii) a detailed evaluation of a full-stack end-to-end usage scenario reaching
from the full-scale host-side DBMS down to hardware-accelerated NDP for ML inference while maintaining
transactional consistency in the presence of ongoing DBMS updates.
This discussion starts with a general introduction of some DBMS basics in Section 2. Afterward, the overall

system architecture of DANSEN including the required modiications to PostgreSQL and the actual hardware
architecture are explained in Section 3. Details of the experimental setup are given in Section 4.1, while Section
4.2 discusses the actual evaluation results. Prior related work is surveyed in Section 5, before we conclude in
Section 6.
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2 A BRIEF INTRODUCTION TO DATABASE SYSTEMS

As this is an interdisciplinary work, we give a necessarily brief introduction into DBMS for computer architects
here down to the level we require to discuss the actual DANSEN system architecture in Section 3.
Modern DBMS handle thousands of transactions per second, while they are at the same time processing and

analyzing large datasets. This advancement in technology has had several notable implications. First, especially
in cloud settings, sudden workload changes from transactional (mostly writing) to analytical (mostly reading)
and vice versa are inevitable. These changes cannot be anticipated as they occur due to user behavior and may
happen frequently. Therefore, both types of processing typically co-exist on the same dataset and system. Second,
modern DBMS do not limit their operations to processing hot data that can easily it into large main memories.
Concurrent analytical processing operates on both the hot, but also the much larger and cold, persistent portion
of the dataset that typically resides in the persistent storage (much larger, but far slower than main memory).
Especially in such cases, massive and slow cold data transfers severely impact system performance and scalability
and hurt resource eiciency. These are inevitable because of the scarce I/O bandwidth in combination with poor
data locality and traditional system architectures, mandating that data must be transferred to the host DBMS to
be processed there (data-to-code). To tackle these challenges, NDP can be utilized to reduce data transfers by
oloading parts of data-intensive processing to computational (sometimes also called smart) storage.

We now discuss these aspects in greater detail before considering how data is actually stored and accessed in a
modern DBMS. The latter will have direct impact on the HW/SW architecture of DANSEN.

2.1 Workload

In database systems, sequentially handling individual operations is not the primary focus. Instead, these systems
are designed to handle and process a multitude of concurrent transactions. A transaction refers to a sequence of
database operations (i.e., SQL statements) that constitutes an atomic unit of work, demarcated by a beginning
(i.e., begin work) and an end (i.e., commit/rollback work). Database workloads [16] encompass a predeined and
parameterized set of diferent transaction types, involving modiication operations and/or queries, that operate
on a dataset with a schema describing one or more database objects (e.g., SQL tables).
Transactions are best described through their distinctive properties [17]. Atomicity, which refers to the all-

or-nothing execution of a transaction, ensures that all operations are either successfully executed or are all
automatically undone in case of failure. This guarantees that the dataset is in the same state as it was prior to
the beginning of the transaction. Isolation mandates that concurrent transactions are executed by the DBMS as
though they were processed individually and are unafected by other modiications. This eliminates concurrency
control anomalies [10] like the dirty read, which involves reading data modiied by an active and concurrent
transaction. Transactional guarantees are provided in accordance with the selected transaction isolation level
(e.g., SERIALIZABLE). In addition, upon successful transaction completion (i.e., commit work), all modiications of
that transaction become durable, enabling them to survive a range of failures (e.g., media crash), and the database
is left in a consistent state, with all constraints satisied.

In general, there exist two distinct workload types: Online Analytical Processing (OLAP) and Online Transaction
Processing (OLTP). OLAP involves long-running analytical transactions (consisting mostly of read queries),
while OLTP typically involves frequent, low-latency modifying transactions (consisting mostly of modiication
write accesses). In modern database systems, both OLAP and OLTP workloads may be executed on the same
dataset and system, known as Hybrid Transactional and Analytical Processing (HTAP) [35]. However, this type
of workload may result in costly transfers of cold data in the traditional DBMS stack [44], as analytics such as
aggregations will need to read large amounts of data (e.g., łISBN numbers of all books ordered in the last 10
yearsž for a histogram).
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2.2 Concurrency Control

Concurrency control ensures that no concurrency anomalies occur and that transactional guarantees (i.e.,
properties) can be achieved. Over the years, diferent types of concurrency control schemes have been designed,
with pessimistic and optimistic being two general classes. The former seeks to prevent conlicts and avoid
concurrency anomalies by blocking other transactions from accessing (writing or reading) a data item (e.g.,
record) through the use of locks. The latter seeks to increase transactional throughput by minimizing or avoiding
locking/blocking at the cost of early conlict checking, multiple versions of a data item, and/or validation.

Pessimistic concurrency control schemes can signiicantly reduce overall throughput as either high-frequency
update transactions will set locks, blocking the execution of long-running transactions or vice versa, since both
types of transactions operate on some common data items. To this end, optimistic schemes come to the rescue. In
this work, we used Multi-Version Concurrency Control (MVCC) as a common optimistic scheme to guarantee
transactional properties and have higher throughput.
In terms of the DANSEN systems architecture, this implies that the NDP operations must be aware of the

MVCC protocols, and be able to ind the record versions current for the speciic NDP transaction, which are not
necessarily just the latest available versions! This is one of the main tasks of the NDP front-end described in
Section 3.3.1.

2.2.1 Multi-Versioning and MVCC. Multi-version DBMS and MVCC schemes [7, 10] are well-suited for modern
HTAP workloads. The fundamental concept of these systems is to maintain multiple versions of each record
in a table. Whenever a transaction modiies a record (via updates, inserts, or deletes), a new version of that
record is created. Thus for every transaction reading a record, the multi-version DBMS determines the latest
committed version of the record prior to the start of that transaction (so-called visible version) and returns it. This
process, known as visibility checking, efectively computes a virtual snapshot of the entire database. Importantly,
this technique allows reading transactions, such as scan operations, to proceed with the visible version without

requesting a lock and waiting. Consequently, in DBMS using MVCC schemes, read transactions are never blocked
by write transactions, and vice versa, except in cases where multiple writing transactions modify the same
data, resulting in write/write conlict [9, 42]. Nonetheless, this technique ofers a good performance under HTAP
workloads, where the long-running analytical (reading) transactions are not afected by the numerous short
modifying OLTP transactions. Additional details on visibility checking can be found in Section 3.1.4.

2.2.2 Version Organizations. Each version of a record is physically represented as an independent and uniquely
identiiable database version record, identiied by its Record-ID (short: recID). Currently, there exist various version
organizations with distinct properties [48], though they all share common characteristics. First, all versions of
a record form a logical version chain with a predecessor and a successor version. Second, each version record
stores the transaction ID of the transaction that created it (creation_timestamp), as well as the transaction ID of
the transaction that invalidated it by creating a successor version (invalidation_timestamp), or a value of NULL if
no successor version exists. Third, every version record includes a reference (pointer, recID) to the predecessor or
successor version record.

2.3 Database Storage Model

2.3.1 Database Records and Pages. Data in a database is logically organized in tables, which are deined by a
relational schema, as shown in Fig. 1-(a). This schema is the typed deinition of a table and speciies the table’s
name, structure, and type of information stored in each column. Thus it deines the format of all records and
how they are stored in memory or on disk. Each record has a recID, which remains unchanged throughout its
lifetime and in its simplest form comprises <Page#, Slot#>. Records are stored on pages, which are contiguous
blocks of memory with a speciied format and conigurable size ranging from 2KB to 32KB. Modern DBMSs ofer
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a variety of page formats/layouts to host records, and the choice of page layout can have a signiicant impact on
the overall performance of the DBMS. The � -ary Slotted Model (NSM) layout, as shown in Fig. 1-(b), is a widely
used page layout in relational DBMS (so-called row-stores) that support frequent modiications and operate on
whole records. As shown in this igure, the NSM format, contains a dictionary of slot pointers, located after the
Page Header, which specify the ofset of a record within the page and some status lags. NSM is particularly
advantageous for variable-sized record modiications, where it can avoid costly record migration by hosting them
on the same page as the original. However, it is sub-optimal for analytical workloads that require high cache
eiciency, as it implies transferring all data.

In this paper, we use the NSM page format and assume a ixed-format/schema, variable-sized records, with a
Record Header (i.e., metadata) consisting of version information followed by a body holding the ield values as
shown in Fig. 1-(c). Data types in the record format are either of ixed length, such as Integer or Float, or variable
length, such as text or binary coded decimals. Variable length types require an additional header that encodes
the length, and if the length exceeds one byte, a lag is used to indicate the header size, which may increase
to 4 bytes. The metadata in the Record Header is used to store information about the transactions involved in
creating or modifying records, including timestamps and predecessor information for record updates in MVCC.
This metadata is crucial for ensuring transactional consistency and performing visibility checks. Records are
always aligned on a 4-byte boundary, and if necessary, additional bytes append to the end of the record.

2.3.2 Storage Management. When a new record is created in the DBMS, the storage manager requests from the
Free-Space Manager a page with adequate space to accommodate the record. The page can either be an existing
one or, if there are no suitable ones available, a new page is allocated. In a DBMS not using our NSI, blocks are
usually stored in lat iles in a ile system. Interestingly, only the ile system knows the logical block addressing
for each Block#/Page# and only the DBMS knows the Page# for a table. This type of information hiding through all
layers of abstraction along the I/O stack poses a signiicant challenge to NDP and makes identifying records and
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navigating across data on the device challenging. With our native storage approach, many of these abstractions
are eliminated, giving an NSI DBMS detailed knowledge (and control) over actual storage.

3 DANSEN SYSTEM DESIGN

This section outlines a DANSEN system architecture that enables the oloading of computations from the query
engine to the storage device. Fig. 2-(a) shows the overall layout of DANSEN including an NDP-capable DBMS (at
the top) and computational storage (at the bottom) that interacts through a NSI (in the middle). In the following,
we begin by introducing an NDP-capable DBMS. Next, we present a NSI that enables the DBMS to handle
NDP-operations directly on the device. We then provide detailed information on the hardware architecture of the
proposed storage solution and discuss the timing model of the proposed approach.

3.1 NDP-Capable DBMS

As shown in Fig. 2-(a), DANSEN is connected to an NDP-capable DBMS [8, 44], namely neoDBMS, that extends
PostgreSQL by eliminating intermediary layers, such as the ile system, along the critical I/O path and operates
directly on NVM storage using physical pointers. DANSEN’s NSI design enables the DBMS to control the physical
data placement and address the properties of the underlying NVM. By leveraging the byte-addressability provided
by the NVM storage, DANSEN signiicantly reduces read-ampliication. As result, the computational storage can
resolve physical records and page addresses in-situ, without frequent and expensive interaction with the host.

3.1.1 Version Organizations. The version organization in the NDP-capable DBMS difers from non-NDP-capable
PostgreSQL, which employs the Old-to-New (O2N) organization in its linked list of record versions. In contrast,
the used DBMS adopts a New-to-Old (N2O) organization for versions, which are stored as a singly-linked list,
and introduces a novel version invalidation model. The O2N organization is well-suited for analytical (OLAP)
operations, while the N2O facilitates fast updates and lookups (OLTP operations) under the HTAP workloads
considered here. To this end, the NDP-capable DBMS uses a Virtual ID (VID) that is unique for all versions of
the same record and replaces the successor recID with the predecessor recID in the record header (c.f. Section 1).
Each version includes a timestamp of the creating transaction and is implicitly invalidated by the existence of a
successor version. To manage the entry points of a version chain, a VID-mapping table is utilized. VIDs point to
the logical page and slot number of the record (i.e., <Page#, Slot#>). Modifying transactions create new VID entries
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or update existing VIDs to point to the latest version, which enables the DBMS to function in an append-based
manner.

3.1.2 Shared-State Bufer. When a transaction produces a record, a new record is placed in a shared-state bufer
(i.e., of size 10 KB - 100 KB) in memory. The shared-state bufer contains one logically addressed NSM-format
page per DB-Object, as shown in Fig. 3. This approach assumes that the working dataset can it in memory, while
the complete dataset, including cold historic data, is much larger and only available in its entirety on persistent
storage. The shared-state bufer contiguously holds all diferences between the in-memory data and the dataset
on persistent storage. To propagate the shared-state bufer to the storage interface, the DBMS is required to
operate in two modes:
Flush & append. Once the shared-state bufer is full, committed versions are lushed and appended to storage and
persisted. A new logical page is then allocated in the bufer to hold further modiications, as shown in Fig. 3-(a).
The NDP-capable DBMS employs the concept of NSI for NVM and NDP-operations (more information on this
can be found in Section 3.2). NSI is based on physical addressing and native storage operations. For instance,
when Logical Page Number (short: lpn) 10 gets full, the DBMS generates a physical page at the address 0x80000
and proceeds to evict the in-memory page to the persistent storage. The physical address is reserved when a
new in-memory page is created. The mapping of logical pages to physical addresses is managed via a Logical
to Physical (L2P-)mapping table, whose changes are also appended to storage during a regular lush operation.
Additionally, VID-mapping changes due to version updates for the current shared-state bufer are also propagated
to the device. Due to the contiguous nature of all shared-state within the bufer, the payload data is always
easily accessible without having to łmarshalž it from dispersed storage locations. In addition, it can eiciently be
transferred to the device with a single DMA burst transaction.
Pass-along & cache. To ensure consistency between the in-memory data and the dataset on persistent storage
before performing an NDP operation on the computational storage, DANSEN employs a strategy of just-in-time
passing-along and caching before invoking an NDP operation. While the shared-state bufer pages containing
committed versions are regularly lushed to the persistent storage once the bufer becomes full (i.e., Flush &
append), even a partially illed bufer has to be lushed to storage as some in-memory pages may contain new
versions that should be visible to the NDP transaction. To this end, DANSEN allocates a special caching region in
the persistent storage exclusively used by the invoked NDP transaction, which is removed upon completion. This
approach enables DANSEN to bridge the gap between the in-memory data and the dataset on persistent storage,
allowing it to support large-memory scenarios and datasets that do not it in memory. As a result, DANSEN
provides a viable hybrid DBMS solution for a wide range of use cases.

3.1.3 Table Modifications. To execute transactions that modify data, such as inserts, updates, or deletes, the
host query executor must irst verify if there is enough free space in the current shared-state bufer to store the
record. This veriication is performed by looking at the page header that encodes the start and end of the free
space and comparing it with the actual record size. After this check is performed, the modifying transactions will
create a new slot pointer and store the record data along with the record header at the next available ofset. This
process has been shown in Fig. 3 using a green arrow. The creation timestamps in the record header are set to the
transaction ID that executed the modifying statement. If this is the irst version of the record, no predecessor
information needs to be stored, and therefore it is set to NULL. In case a previous version of the record exists, the
predecessor information is set to the logical page and slot number of that version. The slot pointer within a page
increases from top to bottom, while records append from bottom to top.

3.1.4 Version Visibility Checking. In DANSEN, each record version is considered a distinct physical entity with
its own unique identity. These versions contain both a creation timestamp and a reference to their predecessor
version, both of which are observable through the metadata format shown in Fig. 1. During each NDP invocation
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a transaction timestamp is provided which indicates the unique number (transaction IDs are monotonically
increasing) of the calling transaction. Using this timestamp, the NDP-engine is able to calculate version-record
timestamps for every record on the device, enabling it to determine whether a record is visible to the current
transaction (belongs to the NDP transactional snapshot) or not. If a record is found to be invisible to the current
transaction timestamp, the NDP-engine module must traverse back to the record’s predecessor(s) to ind the
version that is visible to the requested timestamp. This process is referred to as version visibility checking.

3.1.5 NDP-Operations. Deciding which operations to oload onto the NDP-engine is challenging considering
factors such as data volume, computation complexity, and hardware capabilities. The NDP approach is particularly
beneicial for size-reducing operations, such as ilters (NDP-ilter) [51] and aggregations (NDP-SUM/MIN/MAX ).
These operations involve processing signiicant data volumes to extract subsets or summaries. Operations that go
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computational storage

Fig. 4. Global layout of DANSEN including (a) NDP-capable DBMS, (b) native storage interface, and (c) computational storage.

beyond the built-in capabilities of the DBMS are implemented as UserDeined functions (NDP-UserDeined). This
mechanism enables users to deine and implement custom operations within the DBMS and incorporate them
into the execution plan. The seamless integration of UserDeined functions and the principles of NDP enables the
NDP-capable DBMS to make intelligent decisions about oloading certain computations to custom accelerators
in the computational storage.

This study focuses on oloading analytical (read-only) queries to the computational storage device. As discussed
later in Section 3.3, the NDP engine is currently capable of performing aggregation operations (e.g., SUM, MIN,
MAX, etc.) having a scalar result, with optional record pre-iltering, using built-in functionality. Arbitrary
operations, including multi-result ones, are realized as user-deined hardware functions that are easily integrated
into the DANSEN NDP pipeline using standard AXI interfaces. For the experiments conducted here, we have
manually selected which functions to execute NDP-style on the device. We perform ine-grained measurements,
including diferent data transfer and execution phase times, in Section 4.2.2 Experiment 3, to justify our choice of
NDP operations. These results could later be used in DBMS execution planning to automatically choose between
traditional and NDP processing.

3.2 Native Storage and its Interface

Oloading an NDP operation onto the storage device requires processing capabilities on the storage device, as
well as an active interface to the host system enabling their use. Relying on a traditional read/write storage
interface (e.g., a block-device view) interface with many abstraction layers (e.g., ile system) would complicate
the NDP engine signiicantly, as it would need to be cognizant of all the abstraction layers as well. An alternative
solution is to employ a native storage interface, which eliminates these layers and provides direct access to
hardware resources [44]. Moreover, eliminating the intermediate abstraction layers between the storage and the
host results in leaner I/O stacks [18, 19, 37] and spares the NDP engine from implementing the abstractions. To
this end, we relied on an NSI that enables the DBMS to access/store data directly on the storage device to avoid
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information hiding, as shown in Fig. 4-(b). In the following sections, we explain what functionality is required in
the DBMS and the NSI.

3.2.1 In-Situ Data Interpretation. To execute transactions in NDP mode, it is necessary for the NDP-engine to
interpret the data layout, including table deinitions, record- and page-layout and to navigate across persistent
physical data. To this end, the NDP scheduler translates the table deinition and page format into speciic calling
parameters, such as type and order of datatypes, for the NDP-engine. These administrative parameters which
carried with each NDP invocation include NDP-operation (NDP-engine operation), TransactionID (NDP operation’s
transaction timestamp), ResultSetInfo (Result handling behavior), AddressInfo (physical address ranges for VID/L2P-
mapping table and cached pages on device), SchedulerInfo (resource allocation and workload partitioning for the
NDP-operation), Miscellaneous (in-situ data interpretation and optimization details). By utilizing this approach,
the NDP-engine can transparently interpret database pages and record formats to process record versions and
compute the correct snapshots for transactions.

3.2.2 NSI Commands. TheNSI provides two categories of commands, namely data-commands andNDP-commands

as shown in themiddle part of Fig. 4. The data-commands support page-transfers (via READ_PAGE andWRITE_PAGE).
These two commands completely replace the traditional storage interface that relies on the ile and operating
system. Page-transfer commands are best suited for regular lushes of database pages as well as NDP-related
transfers like VID-mapping or L2P-mapping table.

The NDP-command enables the NDP scheduler to oload an NDP-operation to the NDP-engine via NDP_CALL.
The NDP-engine uses the NDP_STATUS command to notify the NDP scheduler of the status of the NDP-operations
as well as transfer control information. For example, consider a scenario where the NDP scheduler identiies
an operation to execute on the NDP-engine. Prior to invoking the NDP-operation, the native storage manager
propagates (pass-along & cache) the shared-state bufer to the device (in Fig. 4 1○). Next, the NDP scheduler
initiates the invocation of the NDP-engine by specifying administrative parameters ( 2○). Once the operation is
completed on the NDP-engine, the status of the operation is forwarded to the NDP scheduler ( 3○). Finally, the
native storage manager conigures the on-device DMA engine to read the inal results ( 4○) back to the DBMS for
further processing. Note that intermediate results can be held on device between diferent NDP operations and do
not need to be copied back to the host.

3.3 Computational Storage: Interface and Architecture

The underlying infrastructure of DANSEN, as shown in Fig. 4-(c), includes several key components such as the
storage module, NDP-engine, PCIe-controller, DMA-engine, and interrupt handler. The storage module is where
the data actually resides. It is partitioned into persistent storage for storing cold historical data, and a shared-state
bufer that is used for administrative tasks. The interrupt handler is responsible for collecting interrupt signals
from the internal modules and forwarding them to the host through the PCIe-controller. The DMA-engine is
responsible for transferring data between the host and the device via the PCIe bus, while the PCIe-controller
enables communication between the storage module and the host.
The NDP-engine is responsible for executing NDP operations, as shown in Fig. 5. The NDP-engine executes

the NDP_CALL operation by involving three distinct pipeline stages, namely NDP front-end, NDP back-end, and
Result Handler. Only the NDP back-end needs to be customized for diferent operations. The front-end and
the results handler are reusable parts of the infrastructure. In the following sections, we provide an in-depth
overview of each stage’s functionality, followed by a discussion of the microarchitecture required to implement
this processing pipeline in hardware.

3.3.1 NDP Front-End. After receiving an NDP_CALL, the engine proceeds to the irst stage, which is processing
the VID-table to identify the transactionally-consistent record versions that are visibile to the call, extracting the
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Fig. 5. The NDP-engine processing pipeline with three stages: (a) NDP front-end, (b) NDP back-end, and (c) result handler.

record data, and forwarding it to the NDP back-end stage. This operation necessitates the use of several modules,
as shown in Fig. 5-(a):
VID processing. This module extracts recID entries from the VID-mapping table ( 1○) and forwards them to the
visibility checking module ( 2○). Given that each recID can be handled independently, parallel execution of the
irst stage is possible.
Visibility checking. This module computes the transactionally consistent snapshot of the record version
timestamp to determine whether the record belongs to the NDP_CALL transactional. Algorithm 1 shows the
module functionality, which begins by resolving the logical recID ( 3○). Following that, it requests the Visibility
Information ield (visInfo) from the record header using the record format parser module ( 5○). Then, it extracts
and compares the creation and invalidation times of each record against the transactional timestamp (txID). If
the record belongs to the called transactional timestamp, it forwards the physical record address to the record
format parser ( 7○). If not, the module extracts predecessor information from the record’s visInfo (i.e., new recID) to
consider whether an older version of the record might be visible in the current NDP transaction, and repeats
the process. In this manner, records are examined from newest-to-oldest to determine the most recent version
current for this NDP_CALL.
Record address resolver. This module resolves recID and calculates the physical record address. As outlined in
Algorithm 1, the module begins by extracting the lpn and slot number of the recID. Then, it translates the logical
page number into a physical page number (ppn) by using the L2P-mapping table. Afterward, it extracts the line
pointer (linePtr) of the corresponding recID by passing the ppn and slot number to the page layout accessor module
( 4○). The module then calculates the physical record address based on the obtained linePtr.
Record format parser. This module is responsible for in-situ record data extraction and interpretation. It
achieves this by extracting the visInfo from the record header ( 6○) using the getVisInfo() function. In addition,
it extracts the attributes ( 8○) from the record body and forwards them to the NDP back-end ( 9○) using the
getAtribute() function, based on the data format information. The getVisInfo() and getAtribute() functions enable
NDP-engine to extract visInfo and attribute(s) from the record according to record format (c.f. Section 3.2.1).
Page layout accessor. This module enables the NDP-engine to interpret the database page by reading the record
header (getRecordHeader) and data (getRecordData) by using the physical address of the record. In addition, it
extracts line pointer (getLinePointer) from the page header by using ppn and slot number.
Preloader. This module is designed to improve the performance of the NDP-engine by preloading (prefetching)
data from the storage module to local scratch-pad memories for each NDP PE, thereby mitigating NVM access
latencies. Since the page layout and record format are known to the NDP engine, the preloader module can
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Algorithm 1: Pseudo-code for visibility checking and record address resolver.

Function visibilityCheck (recID, txID)

recordAddress = getRecordAddr(recID);

visInfo = getVisInfo(recordAddress);

creation = visInfo→ tx_create;

invalidation = visInfo→ tx_inval;

if ( txID ≥ creation && txID ≤ invalidation) then
return TRUE;

else

newRecID = visInfo→ predecessor;

if (newRecID == NULL) then
return FALSE;

else

visibilityCheck(newRecID, txID);

end

end

end

Function getRecordAddr (recID)

ppn = translate_L2P(recID→ lpn);

linePtr = getLinePointer(ppn, recID→ slot);

recordAddr = addressCalculator(ppn, linePtr);

return recordAddr;

end

Function addressCalculator (ppn, linePtr)

pageOfset = ppn × PAGE_SIZE;

recordAddr = pageOfset + linePtr→ recordOfset;

return recordAddr;

end

accurately locate the relevant information or record that needs to be accessed next. In addition, the module
is capable of preloading database pages, as well as the L2P-mapping and VID-mapping tables. This allows the
loading of larger data sets with a single request to the storage module as eicient long-burst data transfers (More
details on exploiting the preloader is presented in Section 3.3.4).

3.3.2 NDP Back-End. This stage is responsible for actually executing the oloaded operations on the record
data, after the prior stages ensured transactional consistency and interpreted the actual in-storage data layouts to
extract the parsed attribute data. In DANSEN, the NDP operations can range from simple aggregation tasks to more
complex data analytic tasks such as ML inference. As shown in Fig. 5-(b), the back-end stage is structured in two
steps. In the irst step, the NDP-engine applies ilter criteria provided by the NDP_CALL. Filtering can be applied to
single or multiple attributes and is implemented through conditional łifž statements in the software-programmable
front-end. In the second step, the NDP-operation is either executed directly in the software-programmable front-
end (e.g., simple aggregation operations as described in Section 3.1.5), or passed on to the NDP-UserDeined
module for processing later in the pipeline.

3.3.3 Result Handler. The result handler stage is responsible for processing the output generated by the NDP
back-end so that it can be returned to the software database. If only a single scalar value has to be returned (such
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Fig. 6. System-on-Chip architecture of NDP-engine pipeline (a) including sot-core arrays (b), NDP-UserDefined, and result

handler (c).

as an aggregation result), a hardware register is used to pass it back along with the current NDP_STATUS value to
the host. Composite results requiring more space are written to a pre-allocated region of on-device storage. The
memory range to be used for this was set by software-side DBMS, and passed along with the NDP_CALL. The
software-side DBMS eiciently allocates suicient memory on the storage module to accommodate the maximum
possible generated result. The generated results are stored as a vector, eliminating the necessity for a page format,
and are transferred back to the host where they are interpreted and converted into the actual record format by
the software-side DBMS.

3.3.4 NDP-Engine Microarchitecture. As shown in Fig. 6-(a), the heart of DANSEN is a dynamic elastic pipeline
microarchitecture, which is beneicial both for performance, as well for extensibility and lexibility reasons. For
the latter, the pipeline employs an array of easily reprogrammable soft-core CPUs in the front-end to keep up
with advances on the DBMS software side, while the latter stages employ hardwired logic for high performance.

In the following section, we provide a detailed explanation of the microarchitecture of the NDP-engine internal
modules, including the soft-core array and the result handler.
NDP-engine communication. The engine is equipped with two communication infrastructures, namely external
and internal communication. External communication refers to the communication that occurs between the
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engine and the storage devices, and to the host-side DBMS, and are realized via memory-mapped I/O interfaces
as shown in Fig 6-(a) by the data bus and control bus. The data bus enables the engine to access and store data on
the storage module, while the control bus allows the DBMS to manage the soft-cores and result handlers using
the PCIe interface. Internal module communication, on the other hand, refers to the communication between
pipeline stages and is provided via streaming interfaces.
Soft-core integration. The irst stage of the DANSEN NDP pipeline involves the processing of recIDs and the
extraction of record data (attributes). Since the software-side of DANSEN, namely a modiied PostgreSQL DBMS
was also under heavy development simultaneously with the hardware side, the required hardware-software
interface lexibility would have been diicult to achieve using hardwired functions on the FPGA. As a solution,
software-programmable processing elements (PE) were used for the irst stages of the hardware NDP pipeline in
the form of customized soft processor cores.

The selection of a suitable soft-core faced the somewhat unusual challenge in that the main design goals were
small size (as multiple cores are required), high performance on FPGAs (which ruled out many ASIC-optimized
cores), and support for 64b addressing (to keep up with data working sets larger than 4 GiB). The design choices
for addressing these requirements are discussed in Section 4.1.1.
For integration into the processing pipeline, we have wrapped the core with a control unit, local memories,

control and data interfaces, and a preloader module, as shown in Fig. 6-(b). The control unit is responsible for
managing the soft-core by initiating its activation upon receipt of a start signal from the host. In addition, it
provides memory-mapped registers that enable the core to indicate the completion of the program by writing a
status value to them. When the operation executing on a soft-core PE is completed, the control unit generates
an interrupt to signal the host. The control interface gives control over the core by allowing the software-side
DBMS to set controlling registers and load new PE irmware through the PCIe bus. The data interfaces realize
memory-mapped I/O and streaming accesses. The former enables the core to access data (such as database pages
and records) from the entire device-side storage module.
The latter allows the core to forward data (such as extracted attributes from transaction-visible records) to

the NDP-UserDeined module for hardware-accelerated processing. Local memories provide instructions and
scratchpad data for the core and are mapped into the memory space of the soft-core. The instruction memory is
connected to the control interface, which enables the loading of binary irmware into the PE under host control.
The preloader is a custom DMA engine that moves data from the storage module to the scratchpad memory and
back. It has a control interface, a source interface for reading from the storage module, and a sink interface for
writing to the scratchpad memory, which is also mapped into the core address space. For each DMA transfer, the
core is required to provide the source and sink addresses, as well as the data length. Using the hardwired preloader
is considerably more eicient than using soft-core instructions for data transfers, as discussed in Section 4.2.2.
Result handler module. The module, as shown in Fig. 6-(c), consists of three sub-modules, namely organizer,
packer, and control unit. The organizer re-organizes and changes the endianness of the generated results. The
packer packs received data packets via the streaming interface (AXI-stream) into memory-mapped packets
(AXI-MM) and stores them on the storage module in an address range pre-allocated by the DBMS. The control
unit manages controlling registers, such as the address of the pre-allocated memory, and triggers an interrupt
signal upon completion of the assigned task.

3.3.5 Execution Pipeline. Following the NDP invocation, the initial step involves loading binary irmware into
the instruction memory of the soft-core and setting the controlling registers on the soft-core(s) and result handler
module via the NDP_CALL. This step triggers the execution of the NDP-operation based on their designated
tasks (i.e., NDP-operation as described in Section 3.2.1). DANSEN exploits not just pipeline parallelism in its NDP
architecture. The front-end stage actually consists of an array of soft-core PEs that operate in parallel. To this
end, the VID-mapping table is divided into equal-sized partitions and distributed among the soft-cores by the
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DBMS-side storage manager. This task distribution enables the DBMS to control the level of parallelization. Upon
completely processing an assigned VID-mapping table partition, a soft-core PE raises interrupt signals to notify
the host. Finally, the result handler generates an interrupt signal after storing all the generated results from the
NDP back-end stage. Note that the resulting architecture truly is a dynamic elastic pipeline, as the front- and
back-ends may progress at diferent throughput rates.

3.4 Timing Model

For the later discussion of the timing behavior of the DANSEN system, we now introduce a model that covers
all of the relevant parameters. The execution time for an NDP_CALL is measured from the moment the DBMS
invokes the call, to the point when it receives the łcompletedž response. This elapsed time, as shown in Eq.
(1), includes the time required for DBMS to launch the call (tNDP-setup), perform the NDP-operation on the

NDP-engine (tNDP-engine), and to actually transform the raw data result written by the result handler stage to

the pre-allocated NVM storage memory range into actual database records (tNDP-teardown). Note that the latter
is a software-side operation, as the DANSEN NDP engine cannot alter the DBMS state directly.

Prior to invoking the NDP operation, as shown in Eq. (2), the software-side DBMS prepares the VID-mapping
table (tVID) and propagates the shared-state bufer onto the device (tpropagation) using data-commands (c.f.

Section 3.2.2). After executing the operation, as shown in Eq. (3), the DBMS proceeds to retrieve the result
from pre-allocated memory on the storage module (c.f. Section 3.3.3) and transfers it to a database bufer using
data-commands (ttransfer). Subsequently, the software-side DBMS then interprets the raw result data blobs and
creates the corresponding actual DBMS records (tformat). These diferent steps contribute to the following timing,
which will be further broken down in the next paragraphs:

tNDP = tNDP-setup + tNDP-engine + tNDP-teardown (1)

tNDP-setup = tVID + tpropagation (2)

tNDP-teardown = ttransfer + tformat (3)

tNDP-engine. The total execution time for processing an NDP_CALL, as shown in Eq. (4), includes the time

required to start the NDP-engine (tinvoc), in addition to the longest processing time required by any front-end
soft-core PE � for completing its assigned VID-mapping table partition VIDpart(�), as well as the latency of the
second (S2) and third (S3) stages.

tNDP-engine = tinvoc + max
�∈�����

{tcore(n)} + tS2 + tS3 (4)

The execution time of each soft-core Eq. (5) is the sum of the latencies to process a recID (tproc) and visibility
checking (tvis), and the latency to extract record data (text) if the record belongs to the current NDP_CALL
transaction. The probability that a record belongs to the current transaction (Pvis) is determined by the likelihood
of it being found in the current version (P1) and its predecessor versions (P2, P3, ..., Pn).

tcore(n) =
︁

� ∈VIDpart(n)

(

tproc(r) + tvis(r) + Pvis × text(r)
)

(5)

Pvis = P1 +
M︁

m=2

(

Pm ×

m-1
∏

n=1

(

1 − Pn
)

)

The average latency for the visibility checking of a record is shown in Eq. (6). The duration of each visibility
checking operation is determined by the likelihood P1 of inding a visible record in the current version vs. the
probability 1 − P1 of having to recursively check its predecessor (� → pred) creation and invalidation times. Every
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visibility check requires the address resolution (tar) of a physical record address and processing of the actual
visibility information (tvisInfo).

tvis(r) = P1 × (tar + tvisInfo) + (1 − P1) × tvis(r→pred) (6)

The latency between the NDP-engine and storage module is part of the timing model (i.e., tproc, tar, tvisInfo,
and text) as detailed above and in Section 3.3.1. An increase in this latency directly impacts the overall execution
time, thereby reducing the utilized bandwidth. However, quantifying this impact precisely is challenging due to
the difering interpretations of bandwidth from the database and hardware perspectives. This is especially true,
considering the impact of read-ampliication phenomena in multi-versioning systems, when the NDP engine
must retrieve small, randomly distributed data segments in addition to the actual record data. For example, if a
record version does not belong to the NDP transactional snapshot, the engine must check its predecessor records
in storage to determine the correct version. This requires additional accesses to the storage module for address
resolution (tar) and visibility information extraction of the predecessor record (tvisInfo). As discussed later in
Section 4.2 Experiment 4, the preloader mitigates the latency between the NDP engine and storage, and makes
NDP execution times robust against longer NVM latencies.

4 EVALUATION

This section evaluates the DANSEN system. In addition to benchmarking speciic components of the system, we
also perform end-to-end measurements for two NDP data analytics use-cases, namely scalar aggregation and
multi-result ML inference.

4.1 Experimental Setup

Our experimental NDP-capable smart/computational storage system consists of two key components: The FPGA
providing the compute capabilities, as well as the host and memory interfaces, and the actual storage. Our system
is aiming at using modern byte-addressable storage-class non-volatile memory (NVM). With the demise of Intel
Optane [24], such devices are no longer commercially available. We thus rely on emulating the characteristics of
NVM that are relevant for DANSEN on the entire conventional DDR4-SDRAM, using NVMulator [40], on the
FPGA. NVMulator is an open-source hardware module for FPGAs, which emulates NVM access characteristics
by a controlled slow-down of the underlying DRAM used as actual storage.

We have realized this prototype storage on the AMD / Xilinx Alveo U280 FPGA (AU280) board, which features
an UltraScale+-cass FPGA with in-package HBM that uses a 16-lane PCIe Gen3 host interface, along with two
independently accessible banks of 16GiB DDR4-SDRAM each, realized as DIMMs. The system-on-chip on the
FPGA is created and managed using the high-performance TaPaSCo [29] framework.
To relect the trend to use ARM-based processors in modern data centers, e.g., Amazon’s use of their own

Graviton CPUs, or Ampere Altra CPUs used in Microsoft’s Azure cloud, we use the same ARM Neoverse N1
cores that are also used in Google’s TAU T2a cloud platforms for our host machine.

Our host consists of a four-core ARM Neoverse N1 System Development Platform (N1-SDP) [3] with 16 GiB of
RAM that uses Linux to run the software-side DBMS, namely PostgreSQL 12 that has been modiied for NDP
operation as described above.
For our NVM emulation, we disregard low-level device characteristics such as reliability, error rates, and

thermal buildup, and focus exclusively on timing behavior. To relect a wider spectrum of future device timings
and study their impact on the DANSEN architecture, we have conigured NVMulator with three timing sets based
on the published numbers in [15, 24, 36, 43]. From these prior studies, we selected fast-case (r/w: 305ns/100ns),
medium-case (r/w: 350ns/170ns), and worst-case (r/w: 350ns/800ns) timings that have been observed in NVM
systems such as Optane DC.
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Table 1. Sot-core configurations examined for the NDP front-end PEs and Stage 1 execution times (single core and 16-core

array)

Coniguration

(MicroBlaze)

Pipeline

structure

Cache

speciication
Functional units

Fmax
(MHz)

Exec. time (s)

1 core

Exec. time (s)

16 cores

Microcontroller

preset
3-stage, 64bit

D$: none

I$: none
IntMult32 390 8.80 0.91

Minimum area 5-stage, 64bit
D$: none

I$: none
none 380 14.67 1.02

Real-time

preset
5-stage, 64bit

D$: 8KB, 32B

I$: none
IntMult32, IntDiv 283.3 5.59 0.51

Application

preset
5-stage, 64bit

D$: 8KB, 32B

I$: none

IntMult64, IntDiv,

FPU-basic
200 6.24 0.54

Maximum

performance
5-stage, 64bit

D$: 16KB, 64B

I$: none

IntMult64, IntDiv,

FPU-extended
205 4.90 0.42

Orca (RISC-V) 5-stage, 32bit
D$: 32KB, 32B

I$: 32KB, 32B
none 300 3.94 0.33

Unlike traditional smart SSDs that use page-addressed NAND Flash, the emulator mimics byte-addressable
NVM types like Intel Optane DC. However, it only imitates the timing of NVM technologies and does not explore
how NVM’s basic device features, like error management or durability, afect overall system performance. The
emulation allows for easily testing diferent NVM types to observe their efect on performance and leveraging
FPGA as a robust computing element.

Before presenting the results, two key system components, namely the CPU cores for the software-programmable
front-end PEs, as well as the microarchitectures of the hardwired PEs used in the NDP back-end for the two
data analytics use-cases, will be discussed. Furthermore, we will also examine the workload and the system
coniguration in greater detail.

4.1.1 Sot-Core Selection and Configuration. As described above, our architecture relies on having lexible
software-programmable processing in the DBMS-facing NDP front-end. Here, we discuss the various core options
we evaluated. As already discussed in [41] and highlighted by our own experiments below, the choice of core and
coniguration parameters can have a major impact on performance.
Initially, we focused on cores using the open RISC-V architecture as our front-end PEs. However, it quickly

turned out that the 64b cores available in open-source were all targeted at ASICs, and did not achieve high
performance on FPGAs. Thus, we switched to the proprietary AMD / Xilinx 64b MicroBlaze core, which is
optimized for FPGAs and has a plethora of parameters to tune it for speciic applications. We still believe that
there is much potential for FPGA-optimized RISC-V cores, though, and have evaluated the 32b version of such a
processor, namely the Orca RISC-V core.
MicroBlaze. MicroBlaze is an IP core developed by AMD / Xilinx that ofers a wide range of parameters for
synthesis. To determine the optimal conigurations for our speciic application, we conducted an evaluation of
various possibilities based on the Xilinx reference guide [23]. We carefully selected ive diferent conigurations
for our application, as shown in Table 1, and integrated each of these cores into our proposed NDP-engine,
allowing end-to-end benchmarking. For this broad experiment, we limited the front-end PE array to 16 cores.
Note that it is possible using very careful manual tuning to exceed that number, we went to that efort for our
inal system coniguration (Section 4.1.3).
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To have a fair comparison between diferent MicroBlaze conigurations, we execute a typical NDP use-case on
each core, looking at the complete processing required for a single record, identiied by its recID. The use-case
consists of a query on a ive-column table with small attribute sizes, four integers and a variable-length ield
per record, on a data set of three million records. The storage access pattern occurring during the visibility
checking process and interpretation of the NSM page format containing this single record is mostly random
(pointer-chasing), and of low processing intensity, as only a small volume of data is actually evaluated per record.

The query should return the sum of all entries in the irst table column. The irmware for the MicroBlaze
cores was compiled with the -O3 compiler optimization. The reported time in the last two columns of Table 1
corresponds to the tNDP-engine of Eq. 4, since the tinvoc was negligible (a few milliseconds) compared to the core
execution time.
Our evaluation shows that conigurations achieving a high clock frequency do not necessarily lead to a

signiicant end-to-end speedups. For DANSEN, coniguring the 64b MicroBlaze (MicroBlaze64) for Maximum

Performance resulted in the fastest application-level execution time.
RISC-V. As discussed above, we did make an efort to include an open-source core that would enable easier
experimentation with possible custom instructions for NDP acceleration, and thus considered a RISC-V-based
processor. Among various RISC-V cores, the Orca RISC-V core stands out due to its high performance [20]. Orca
is a ive-stage 32-bit in-order RISC-V core designed to operate on FPGA [22]. In our evaluation, we replicated the
same scenario as the one for MicroBlaze, and found that the Orca core actually achieved the fastest execution
time. However, the main drawback of the Orca core is its limited address space of 32b, which makes it unsuitable
for a potential łbig dataž DBMS workload.

4.1.2 NDP Accelerators for Data Analytics Use-Cases. The DANSEN on-device architecture is highly lexible and
allows the easy insertion of NDP accelerators for application-speciic data analytics operations between the
front-end and the result handler stages, which are always reusable.

An example of such an accelerator is the inference in Sum-Product Networks (SPNs), a probabilistic graphical
MLmodel that can express uncertainty over its output. SPNs have been successfully applied in various applications,
including robotics [50], medical imaging [38], as well as in databases, where an SPN is used for paper authorship
prediction or social network link prediction [33]. SPNs can also be used to accelerate the DBMS itself, namely by
performing fast and accurate cardinality estimation for query results [21].

SPNs are structured as a Directed Acyclic Graph (DAG) consisting of weighted sum-nodes, product nodes, and
nodes representing univariate distributions. In this work, we focus on a speciic lavor of SPNs so-called Mixed
SPNs [31] where the SPN DAG evaluation begins with the leaf node distribution, followed by propagation of
values upward through the graph, performing multiplication or weighted addition, until a inal probability value
is obtained at the root node.
SPN software implementation. For the software baseline, we implemented the trained SPN in C as a User
Deined Function (UDF) in PostgreSQL, to be executed on the host. A UDF can be written in C or C++ and
loaded at run-time via the CREATE_FUNCTION command, taking combinations of base (i.e., Integer and Float) or
composite types as parameters, and returning individual result records or result-record sets when used with an
SQL query (SELECT ...).
SPN hardware implementation. The hardware accelerator for SPN inference in NDP was created using the
toollow described in [39], which generates a fully pipelined accelerator from a description of the SPN DAG
structure in a simple, text-based format [32]. The generated hardwired accelerator is connected to the rest of the
NDP pipeline using AXI4 streams.

4.1.3 Benchmarking Setup. All experiments described later employ the following coniguration for both the
workload and NDP smart storage.
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Database workload. In this paper, we evaluated the eiciency of the DANSEN system by performing NDP-
operations on the Orderline table from CH-benCHmark benchmark [13]. Our evaluation utilizes two types of
queries, each with unique characteristics, to highlight diferent aspects of system eiciency. The irst query,
referred to as uery-SUM, aims at reducing the result set to a single scalar result using aggregation functions
such as SUM, MIN, MAX, and COUNT, which are commonly found in analytical queries, especially in OLAP and
HTAP benchmarks such as the CH-benCHmark and TPC-H. The second query, referred to as uery-SPN, shows
multi-valued results having additionally computed attributes, and performs ML inference using a hardwired SPN
accelerator integrated as user-deined function in our NDP pipeline. These two queries leverage FPGA capabilities
and the system’s ability to support a diverse range of workloads.
As CH-benCHmark is not directly suitable for this ML operation, we have to extend it appropriately. To this

end, we repurpose and extend the variable length dist_info DBMS column to 80 bytes (plus one byte for length)
to feed the SPN, which expect an input of 80 8-bit feature values. The modiied column is randomly initialized by
picking from a set of 10,000 precomputed input vectors, each consisting of 80 byte-sized features to be analyzed
by the SPN. In this manner, the SPN UDF may be included in a SQL query (referred to later as uery-SPN) to
retrieve inference results:

SELECT w_id , d_id , o_id , number , SPN(dist_info)

FROM OrderLine WHERE d_id <= 2;

For this query, both DBMS on the host and NDP-engine on the device iterate over the entire table to determine
visible records, and pass the byte array of each visible record containing the SPN-Sample having łan identiier
less than or equal to 2ž into the SPN hardware and software implementations, respectively. Then software
implementation of the SPN computes the probability value based on the inputs and passes it into the regular
query processing low. The hardware implementation, after computing the probability value, passes the result to
the result handler to be transferred back to the regular query processing low on host. This process is repeated
for all visible records. This is an example of an operation having a multi-row result.
For the second use-case, namely a query that returns just a single scalar result, we use the Q6 aggregation

operation:

SELECT SUM(amount) AS revenue FROM OrderLine

WHERE '2000 -01 -01' <= delivery_d AND delivery_d < '2022 -01 -01'

AND 1 < quantity AND quantity <= 100000;

In this query, which we will refer to as uery-SUM, we aggregate the amount column of the OrderLine table
and compute the revenue generated from orders with delivery dates between ’2000-01-01’ and ’2022-01-01’, and
quantities between 1 and 100,000.
NDP hardware architecture coniguration. The DANSEN hardware architecture can be lexibly conigured,
with the number of soft-core PEs in the NDP front-end being a key parameter. We conducted a thorough design
space exploration, trading-of FPGA area (number of PE cores) with maximal clock frequency to achieve the best
wall-clock end-to-end performance.
With careful optimization, we were able to realize 20 MicroBlaze cores in the front-end array, and fully use

both of the two separate DRAM memory banks of the AU280 board, each with its own NVM emulation logic.
As can be seen in Fig. 7, this led to a very complex FPGA design that timing closure was diicult to achieve
for. Subigure (a) highlights the system-level interfaces (MIG memory controller, NVM emulators, PCIe, DMA),
subigure (b) the NDP pipeline with its 20 front-end PEs, the SPN, and the result handler stages.
Detailed resource utilization data for each module in the design, which was created with AMD / Xilinx Vitis

2022.2, is reported in Table 2.
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Fig. 7. Layout of the DANSEN accelerator on the AU280 FPGA, showing the infrastructure components in (a) and the individual

PEs in (b). Note that the numbers indicate the individual sot-core CPUs.

Non-NDP Software Baseline. To evaluate the efectiveness of the DANSEN system, we compared it against a
traditional stack running PostgreSQL 12 (short: pgSQL) on a traditional storage device, namely a 500 GiB Samsung
970 Pro SSD, which is a PCIe 3.0 NVMe SSD and commonly used as the storage system in a commodity DBMS.

For comparability, wewanted tomake sure that using our emulatedNVM storage in łdumbž (non-computational)
mode has a similar performance to this traditional baseline, so that we only show speedups achieved due to our
NDP architecture, and not due to the use of potentially faster storage memories (NVM vs. Flash), which would
not be the point of this work.

To this end, we developed a simple Linux block device driver to access the emulated NVM on the FPGA board
from the host system as łdumbž storage, without any NDP capabilities. Then, we used the Flexible I/O (FIO) [5]
benchmarking tool to generate I/O traic and measure the bandwidth of our emulated storage and the commercial
NVMe SSD. The FIO tool was conigured to operate with 8 KiB pages, matching the NSM page size, and to
generate a workload of 32 GiB, the maximum capacity of the emulated hardware, across four threads, as the host
has four CPU cores. For the underlying ilesystem, we used ext4.

As shown in Table 3 for diferent emulated NVM latencies, the performance of the DANSEN storage when used
in łdumbž mode closely tracks that of the commercial SSD for random accesses, with the SSD being faster for
sequential accesses. This is most likely due to it using internal full-speed DRAM read-ahead/bufering for these
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Table 2. FPGA-resource available and utilization.

Module name LUTs Registers BRAM DSPs
Fmax
(MHz)

Available resources 1303680 2607360 2016 9024
DANSEN SoC 66.18% 32.39% 53.27% 8.82%

PCIe-controller 4.62% 2.94% 3.13% - 250

DMA-engine 0.88% 0.69% 0.74% -
250
300

Storage module
NVMulator

7.09% 4.59% 3.38% 0.07%
300

0.55% 0.19% 0.42% -

NDP-engine
Single MicroBlaze64
SPN
Result-handler

53.09% 23.85% 45.78% 8.75%

180
2.09% 0.69% 2.18% 0.14%
4.18% 2.52% - 5.87%
2.07% 0.22% - -

Table 3. A bandwidth comparison between NVMe SSD and NVMulator as pure storage using the FIO tool.

Storage Device Read (random) Write (random) Read (sequential) Write (sequential)

NVMe SSD 498 MiB/s 299 MiB/s 3181 MiB/s 1748 MiB/s

NVMulator (fast-case) 429 MiB/s 343 MiB/s 1162 MiB/s 1130 MiB/s
NVMulator (medium-case) 423 MiB/s 340 MiB/s 1112 MiB/s 1132 MiB/s
NVMulator (worst-case) 425 MiB/s 298 MiB/s 1103 MiB/s 1097 MiB/s

cases, which is faster than our always slowed-down DRAM mimicking NVM. Given these numbers, all of the
performance beneits we show will be due to our NDP, and not artiicially fast storage.

To ensure realism, we limited the memory available to the host-side database to 4 GiB. Without this limitation,
the host-side DBMS would see an unrealistically large memory compared to the storage capacity, which in our
setup is limited by the 32 GiB DRAM-emulated NVM on the AU280 card. A production smart storage system
using actual NVM would provide much larger storage capacity, and thus would not need this workaround.

4.2 Results

In this section, we present a series of experiments conducted to evaluate the system performance in a real-world
application. The experiments are categorized into two kinds: system-level and device-level experiments.

4.2.1 System-Level Experiments. We begin with system-level experiments that measure the I/O throughput of the
DBMS. Next, we proceed to analyze the impact of selectivity on the overall system performance.
Experiment 1: DBMS I/O throughput. The objective of this experiment is to examine the impact of DANSEN on
the I/O throughput of the DBMS. For this purpose, we compared the I/O throughput of the DBMS in normal and
NDP modes while executing uery-SUM and uery-SPN of our benchmark workload with a dataset of 150 million
records. In this experiment, the NDP-engine is conigured to use 20 front-end PEs, with the preloader enabled.
More detailed experiments regarding the NDP-engine performance are presented in Section 4.2.2, including
on-device storage throughput in Experiment 5.

We begin by looking at the data transfer throughputs occurring between the PostgreSQL DBMS on the host and
the traditional (łdumbž) storage, and the DANSEN NDP-capable smart storage. Fig. 8-(a) shows this comparison
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for the DANSEN and baseline systems while executing uery-SUM over time. The execution of uery-SUM on
DANSEN takes 7.6 seconds. However, the execution of uery-SUM on the host takes 80.2 seconds as it involves
loading database pages from the storage device and processing them. During the execution of this query, the host
CPU is under-utilized, as it has to wait for I/O operations to the storage device. As shown in this igure, after
≈6 seconds, the pgSQL begins to lush old pages to the storage, resulting in cache page contentions. In contrast,
the proposed approach processes data in close proximity to the storage, and does not require waiting for I/O
operations. Fig. 8-(c) shows the I/O throughput of the DANSEN system in detail for four diferent NV-emulator
access latencies. As shown in this igure, there is only a single write request to pass-along & cache (at second 0 as
explained in Section 3.1.2) modiied data from the DBMS to the NDP device before invoking the NDP operation,
and one read request that carries the inal result back to the DBMS. Note that, due to preloading, our NDP
processing performance is insensitive to the selected NVM latencies.

Fig. 8-(b) shows a similar experiment foruery-SPN. As shown in this igure, executinguery-SPN on PostgreSQL
takes a longer time, as it requires loading more database pages from the storage device (at second 16). In contrast,
DANSEN again requires just the single write request to pass-along & cache pages (at second 0) and one read
request (at second ≈50) for reading the raw data result, which now encompasses the separate ML inference results
for all records processed, taking a total of 3.2 GiB. This is transferred back to the host at a rate of 3.2 GiB/s. The
I/O throughput of the DANSEN system is shown in detail in Fig. 8-(d).

This experiment demonstrates that moving computation closer to the storage device signiicantly reduces the
volume of data that has to be transferred within the system, and that the transfers that still need to occur can
be performed at greater eiciency (higher throughputs). This behavior is one of the key beneits of DANSEN,
achieved by reducing the number of intermediate (abstraction) layers between processing and storage.
Experiment 2: Impact of selectivity. In DBMS terminology, selectivity refers to the percentage of records
passing through iltering (e.g., the condition in a SELECT ... WHERE condition) forward to further processing.
In this experiment we consider the impact of diferent selectivities on traditional DBMS and DANSEN. To this
end, we vary the selectivity over the d_id attribute of the dataset. Fig. 9 shows end-to-end execution times for
uery-SPN on a dataset of 150 million records, with diferent selectivities ranging from 0% to 100%. We also show
the impact of page bufer sizes by increasing the host memory from 4 GiB to 16 GiB.

As expected, the dataset generally exceeds the capacity of the DBMS memory, which results in longer execution
times due to page accesses from slow storage in the baseline. The 0% selectivity represents the raw scan and ilter
performance of both pgSQL and DANSEN. Thus, when increasing the selectivity rate, more records meet the
ilter condition and undergo SPN processing, leading to longer execution times due to the increased processing
demands and the generation of more result records, which afect both DANSEN and pgSQL. Host-only processing
under pgSQL mandates the transfer of all cold database pages from storage to main memory to determine which
records to ilter. This leads to increasing execution times of 92s in a 4 GiB scenario and 82s in a 16 GiB scenario
solely for the scan, iltering, and visibility checking.
At 100% selectivity (=all records actually processed), DANSEN still provides a noticeable reduction in data

transfers via the slow I/O bus, as it only returns the result-set of the SPN query, which is smaller compared to
transferring entire DB pages, including all attributes of the records, back to the DBMS. In addition, the DANSEN

system leverages its SPN hardware accelerator and the interleaved transfers/processing enabled by the preloader
module, both of which further improves the overall execution times.

Note that when increasing the host memory from 4 GiB to 16 GiB, more pages can be bufered in host memory,
resulting in better execution times for pgSQL. However, as we target łBig Dataž settings, provisioning main
memory to completely hold huge datasets including cold data is generally uneconomical. Even when the main
memory capacity is assumed to be at an unrealistically high 1:2 ratio compared to the storage capacity, which
is usually in the range of many terabytes for commercial storage systems, DANSEN consistently outperforms
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increasing NVM delay on DANSEN performance.
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pgSQL. This performance improvement ranges from 12× in the 4 GiB setting and 10.7× in the 16 GiB setting at
0% selectivity to 1.5× at 100% selectivity in both settings.
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Fig. 11. Interaction between preloader use and increasing core counts on NDP-engine execution time for (a) uery-SUM and

(b) uery-SPN, for a dataset size of 150M records and diferent emulated NVM latencies. (c) A speedup of uery-SUM and

uery-SPN with increasing number of sot-cores in with-preloader mode.

4.2.2 NDP-device Experiments. The prior experiments focused on end-to-end performance and host-device
(storage or NDP) interactions. In the next paragraphs, we shift the discussion to a more detailed view examining
the impact of microarchitectural choices in the DANSEN NDP hardware, such as the number of cores and our
preloading scheme for data.
Experiment 3: Overall execution time. In this experiment, we compare the overall execution time of uery-

SUM anduery-SPN with the baseline. Note that this baseline execution time for processing these queries includes
the time to fetch the record data from the NVMe device and process them in pgSQL. The execution time for
DANSEN (more details in Section 3.4) consists of tNDP-setup, tNDP-engine, and tNDP-teardown. Our evaluation

shows that tNDP-setup (≈ 200 ��) and tinvoc (≈ 30�� for NDP engine using 20 cores) are negligible relative to the
overall execution time.

DANSEN uses the term preloader to collectively refer to explicitly managed scratchpad memories and the data
transfer strategies for their use.
We examined the execution time of NDP-operations in two modes: with a preloader (With-preloader) and

without preloader (No-preloader). Fig. 10 shows the overall execution time foruery-SUM (Fig. 10-a) anduery-SPN

(Fig. 10-b) on the dataset sizes ranging from 30 million records (≈5GiB) to 150 million records (≈25GiB), executing
on 20 MicroBlaze64 cores. The greenish color bars show the execution time without the preloader, while the
pinkish ones show that with the preloader. The diagonally hatched section of each bar on this igure indicates the
database overhead (TimeNDP-teardown). As shown in this igure, using the preloader in the proposed approach
improves execution time compared to the conventional NVMe-drive by 1.5× for uery-SPN benchmark and 10.6×
for uery-SUM with preloader enabled. As expected, the preloader improves system performance by accessing
NVM storage in longer, more eicient bursts, and enables the NDP-engine to hide the NVM access latencies by
moving data from/to storage to/from scratch pad memories in a double-bufered manner, in parallel to processing.

Note that Fig. 10 shows each of the execution times for diferent emulatedNVM latencies (of/best/middle/worst),
as explained in Section 4.1. Without the preloader, using slower NVM carries a signiicant execution time penalty.
With the preloader, execution times stay mostly independent of increasing NVM latencies.
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Experiment 4: Scalability. We build on the previous experiment to evaluate the NDP-engine performance,
now varying the number of active MicroBlaze64 cores in the irst stage of the NDP pipeline. Fig. 11 shows
the NDP-engine execution time for diferent numbers of active cores, ranging from 1 to 20, while processing
the largest dataset (≈25 GiB). As expected in No-preloader mode, using slower emulated NVM causes a longer
execution time. However, enabling the preloader improves NDP-engine execution time and mostly hides NVM
access latency, resulting in a roughly similar execution time for the four NVM latencies examined. Our evaluation
indicates that other dataset sizes have a similar behavior (omitted in igures for clarity). As shown in Fig. 11-(c),
the speedup of both queries is linear. This proves that increasing number of cores in the the NDP front-end
results in even higher execution time.

Experiment 5: On-device throughput. To further investigate the NDP-engine performance, we measure the
on-device throughput of the NDP-engine while running uery-SUM and uery-SPN on 20 MicroBlaze64 cores.
Fig. 12 shows on-device read/write throughputs for the NDP-engine executing these queries. We found that the
on-device read throughput for uery-SUM and uery-SPN are 4 GiB/s and 0.6 GiB/s, respectively. In addition, the
on-device write throughput for uery-SPN is ≈0.07 GiB/s for storing the per-row SPN inference result vector, and
for the uery-SUM is zero as it does not write to the storage module at all and just computes a single scalar result.
An interesting question arises as to why the read throughput for uery-SPN is lower than that of uery-SUM,

given that they both process the same dataset. The reason for this diference lies in the fact that the uery-SPN

requires the extraction of more data from the record body, including the primary key and SPN ields (16B keys,
80B SPN data). In contrast, the uery-SUM operation only requires the iltering of 16B and forwarding of a single
8B value. In addition, during the execution of the uery-SPN operation, the result for each row is continuously
written to the storage module. The uery-SPN example is thus representative of operations which are more
computation intensive, while uery-SUM with its very simple aggregation function is more I/O intensive.

The on-device throughput could be further increased by enhancing the level of parallelism in the NDP front-end
(c.f. Experiment 4). However, the current NDP engine coniguration does not fully utilize the internal bandwidth
for two main reasons. First, the nature of the application, especially the visibility-checking process, performs
random memory accesses in a pointer-chasing-based manner. This process, explained in Section 3.3.1 and
considered in the timing model in Section 3.4, involves multiple steps to ind the visible record version, requiring
at least four cache-line size (64B) accesses to the emulated NVM per recID. These stages include retrieving recID,
resolving the address, extracting the linePtr, and reading visInfo from the record header. In addition, attribute
extraction foruery-SUM anduery-SPN from the record body requires an additional 1 and 1-3 cache-line accesses,
respectively. Second, the irregular data access pattern to the emulated NVM lowers utilization, as addresses are
dynamically calculated at each stage during run time and cannot be well predicted. In addition, each access
currently passes through the Microblaze64’s local L1 system cache (c.f. Section 4.1.1), followed by either direct
access or via the preloader and scratchpad memory to the emulated NVM. The preloader optimizes the eiciency
of data handling by interleaving transfers with computation and requesting larger data sizes (64 B - 4 KiB) for
more eicient long burst accesses.

4.3 Discussion

Based on the end-to-end and low-level evaluations presented in the prior sections, we can now enter into some
overarching discussion.
Potential for write transactions as NDP operations. DANSEN currently supports performing read (analytical)
operations as NDP in a transactionally consistent manner, namely by using the latest visible record version on
the device, in the presence of concurrent writing (update) transactions on the host, without having to wait for a
lock request to succeed. Extending DANSEN to also allow NDP write (update) operations is possible, but becomes
considerably more challenging, as multiple writes to the same data may now occur concurrently on the host and
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Fig. 12. The on-device throughput of the NDP-engine for (a) uery-SUM and (b) uery-SPN, while processing 150 million

records on 20 MicroBlaze64 cores in the NDP front-end across four emulated NVM latencies.

NDP device, leading to write/write conlicts. As a solution, handling write operations could be addressed by a fast
synchronization mechanism between the host and NDP device [9, 42]. We are looking forward to the availability
of CXL-capable hosts and FPGA boards to investigate the implementation of these mechanisms.
Soft-core limitation. In Experiment 4, we observed that an increase in the number of parallel active soft-cores
in the NDP front-end results in a shorter execution time for the irst stage. However, Experiment 5 showed
that the proposed NDP-engine only utilizes ≈4 GiB/s on-device throughput in uery-SUM, which is somewhat
disappointing considering that the current design employs two memory controllers with a theoretical bandwidth
of ≈38 GiB/s to the emulated NVM. This ineiciency is most likely due to the random memory accesses and
on-the-ly address calculation performed in the pointer-chasing-based visibility checking algorithm (c.f. Section
4.2.2 last paragraph). While more cores could be used in the front-end to better hide the memory latencies, the
DANSEN design is already quite large (see Table 2) and barely meets timing even with three clock domains.
Thus, instantiating more MicroBlaze64 cores is infeasible. We are considering two options to address this: First,
replacing the MicroBlaze64 core with a more modern FPGA-optimized 64-bit core based on Taiga/CVA5 [30],
which can be conigured to be smaller/faster than the MicroBlaze64. Second, now that the DBMS-facing data
structures and algorithms in the front-end have stabilized, employing an optimized multi-threaded hardwired
accelerator for the front-end functionality.
Applicability to diferent host DBMS / storage engines. The NSM layout we use for storage pages in DANSEN

is widely used in row-oriented relational DBMS, e.g., from Oracle and Microsoft. Thus, our fundamental NDP
architecture will be portable from the PostgreSQL we employed to these DBMS as well. However, NSM has a
relatively poor cache locality and is thus suboptimal high-performance analytical workloads. These are better
handled by column-oriented storage engines, using formats such as PAX [2]. To enable the use of DANSEN for
DBMS using this approach, changes in the DANSEN NDP front-end would be required, as it is the only part of the
hardware that directly interacts with database data structures and algorithms. However, the rest of the DANSEN

NDP pipeline could be used as-is.
In addition, existing database data layouts are designed to maximize cache eiciency for conventional x86 and

ARM CPUs and storage mediums such as Flash. Emerging computational storage devices that utilize NVM raise a
very relevant research topic regarding the development of specialized data layouts tailored for computational
storage and NDP. Furthermore, in-storage data transformations have the potential to decouple the data layouts
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employed in computational storage from the applications running above, paving the way for multi-engine
operations.
Future works. Our evaluations show that the DANSEN system is a promising computational storage solution for
database applications, with several research questions already planned for future investigation:
. To what extent can computational storage support the processing of database updates autonomously in update
environments and hybrid workloads?

. What degree of parallelism, using either hardwired modules or smaller soft cores, in the NDP-engine’s front-end
would allow full internal bandwidth utilization in DANSEN?

. How can specialized data layouts for NVM-based computational storage improve NDP and enable decoupled,
multi-engine operations? And what level of hardware support is required?

5 RELATED WORK

In this section, we will start by examining the concept of native storage. Then, we will focus on prior work
proposing the use of NDP to improve system performance, speciically within the domain of database systems.

5.1 Native Storage

The traditional interfaces used for storage devices present a signiicant obstacle to the efective implementation of
Non-Volatile Memory (NVM) based Data Processing (NDP) approaches. This is primarily because these interfaces
lack transparency in exposing the underlying storage properties. Both block device interfaces and ile systems are
designed with a focus on data transfers, speciically block-based access, which hampers the seamless utilization
of NVM features like byte-addressability [11, 34]. The lightweight ile systems proposed by [4, 28] ofer improved
storage management but provide little advantage for NDP since they mimic a contiguous address space and
depend on logical addresses, which do not align well with the core principles of NDP.

On the other hand, the native storage solution allows the host application, such as database systems, to directly
interact with the physical storage, eliminating the complexity of intermediate abstraction layers. This enables a
more eicient exploitation of NVM features and enhances the overall performance of NDP.
Previous studies on persistent storage have proposed various approaches to data processing on raw Flash,

including BlueDBM [25], NoFTL [19, 45], and CORFU [6]. Among these studies, both BlueDBM and NoFTL have
presented end-to-end systems.

BlueDBM adopts a cluster-based architecture within a distributed system, which facilitates storage management
and hardware acceleration for data processing on raw Flash, making it suitable for a wide range of applications.
An example of such an application is BlueCache [49], which builds on BlueDBM and serves as a key-value storage
engine.
In contrast, NoFTL introduced a general native storage interface for host-based storage conigurations. This

integration embeds deep physical storage management into the DBMS architecture. The utilization of a native
storage interface has shown performance improvements not only in relational database systems [19] but also in
key/value database systems [25]. Moreover, such an approach is crucial for eicient data processing on storage
and enables the exploitation of the byte-addressability characteristic of NVM.

5.2 Near-Data Processing

Previous studies have proposed using NDP techniques to improve system performance. For instance, [14, 26, 27]
suggested oloading certain data processing tasks, such as scans and joins, to embedded processors on a SmartSSD
to enhance system performance. However, their methodology’s applicability is constrained by its dependence on
the current ARM processor architecture.
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Another approach, called IBEX [47], explored the utilization of FPGAs as co-processors for executing speciic
database operations within the storage system. Nevertheless, this approach faced limitations due to the challenge
of eiciently moving data and results to and from the FPGA.
Furthermore, these works have not fully capitalized on the unique features of NVM, such as device-internal

bandwidth, parallelism, and access latencies. To more fully exploit these aspects, [45, 46] evaluated diferent NDP
result set handling strategies, including result materialization and re-use. In their study, the task distribution was
partitioned between an ARM processor and an FPGA operating in parallel. However, that work is closely tied to
page-granularity NAND lash and not fully applicable to the byte-addressable NVMs we examine here.

Lastly, it is essential to highlight that these studies primarily concentrated on read-only scenarios with static
datasets. However, modern DBMS are dealing with hybrid workloads that also include data updates and writes. In
this regard, FOEDUS [28] made an attempt to leverage NVM/DRAM for managing cold/hot data and addressing
modifying transactions on new hardware, resulting in excellent scalability. Nevertheless, FOEDUS fell short of
fully exploiting NVM characteristics, such as byte-addressability, as it only utilized NVM technologies for page
layout purposes.

In this work, we have addressed these challenges and combine the exploitation of NVMwith heterogeneous NDP,
using both lexible software running on a multi-core array with high-performance ixed-function accelerators.

6 CONCLUSION

We introduce DANSEN, a comprehensive end-to-end system architecture that enables query processing near
storage. Within this system, we have developed a prototype storage, NDP-engine, storage interface, and NDP-
capable DBMS. Our experimental results demonstrate the signiicant advantages of DANSEN over non-NDP
PostgreSQL 12. With reduced data movement costs and improved computational parallelism, DANSEN achieves up
to an impressive 10.6× improvement in end-to-end execution time while maintaining the transactional integrity
of the database, even when processing 150 million records that traditionally would carry a high data transfer
efort.

Furthermore, our results highlight the efectiveness of the NDP-engine, which eiciently utilizes the preloader
to process queries near storage without the need for intervention, efectively hiding the NVM access latency.

Beyond the immediate performance gains, our evaluation also underscores the potential of DANSEN as a new
computational storage solution for enhancing the performance of database management systems across various
applications. This work opens up new possibilities for designing computational storage, capable not just of the
analytical operations described here, but also able to autonomously perform database updates in NDP.
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