
13C H A P T E RModels of
Sequential
Computation

Programming is often considered as an art, but it raises mostly practical ques-
tions like “which language should I choose”, “which algorithm is adequate”,
and “what is an ergonomic user interface”. The more thoughtful programmer
will pose general questions on computing like:

• Is there an algorithm for every problem?

• What is an “ideal” computer?

• How does a “minimal” computer look like?

• Can I proof the correctness of my program?

These are questions about theoretical Computer Science. It deals with the
foundation of informatics: computational models, complexity, proofing the
correctness of programs in particular, and not about hardware issues. The
foundations of hardware are Physics and Electronics, but the foundation of
informatics is Mathematics.

Computer Science imparts mostly practical knowledge but those interested
in deeper insight should read this chapter.

Lets start with the question of computational models that are minimal in
terms of hardware, but sufficient general to execute all possible algorithms.
Does it make sense to think about such models?

Yes, we want to find out the principles common to every technical
computer.

There exist a couple of minimal models and we will look at the most
prominent one, the Turing machine, called after the British computer scientist
Alan Turing (* June 23, 1912, † June 7, 1954).

13.1 Turing Machines

Turing studied in the beginning of the 1930th a simple hypothetical machine
that has only a very limited functionality. Many attempt have been made
to find machines that can compute any algorithm, but those machines were
found equivalent to the Turing machine in the sense that they had all the same

221

222 Chapter 13 Models of Sequential Computation

Figure 13.1 Turing machine with a n-state control unit, infinite storage band, and

read/write-head

computing capabilities. This gave a strong indication for Church’s hypothesis that
“the Turing machine can execute every computable function” and underlined
the importance of the Turing’s research.

A computable function is a function for which an algorithm exists to compute
the function value.

The Turing machine consist of only three elements:

• an unlimited storage “band” where each storage cell contain one value
from a finite alphabet V or is empty (t)

• a read/write-head to read and write a data value from/to the “band”

• a control unit containing a program that operates the read/write head and
changes its state.

Initially the band contains a finite number of cells with symbols (data)
from the alphabet V. Outside the data the band is empty. The read/write-head
is positioned on the first nonempty cell as in the Figure 13.1.

The value of the cell is read and depending on this value and the current
state of the control unit a new (or the old) value is written into the cell, the state
is updated, and then the head is moved one position left or right to the next
cell. At the next position again, the cell’s data is read, a new value is written,
and the head moves to the next cell (left or right). This continues until the
machine reaches it final (halt) state.

More formally, the program of the Turing machine is a function of two
parameters, the current cell value and the current state. The output of the
function is a new cell value, a head movement of one cell left or right, and a
new state.

Lets make a little example: For simplicity we chose as alphabet the binary
digits {0, 1}. Our program should produce an even parity for any data on the
band. The program is given in form of a table where the rows are defined
by the state of the control unit and the columns are the possible data values

13.1 Turing Machines 223

state 0 1 t

even (even,0,r) (odd,1,r) (halt,0,n)
odd (odd,0,r) (even,1,r) (halt,1,n)

Figure 13.2 Transition function for a Turing machine for even parity generation

(symbols) on the band.

We will demonstrate the operation with the data 10101.
Our initial state is even and the reading starts at the first position with

a value of 1. In the table of Figure 13.2 we find for the state even the action
(odd,1,r) which means “leave the cell value unchanged, change the state to odd
and move the head one cell to the right” At the new position we read 0 and
which results together with the state odd the result is (odd,0,r). The next step
yields (even,1,r), the following (even,0,r), and (odd,1,r). Now we are past the
last data and read an empty cell. In our table we have (halt,1,n) in column t

and row odd. We write a 1, set the state to halt and stop the program. The new
data on the band has now an even number of 1s, four 1s to be exact.

It is left to the reader as an exercise to show that in the case of even number
of 1s the parity bit will be 0.

It is not easy to believe that such a machine can execute any algorithm. We
will not proof it here, but we will at least try to make it plausible.

First we limit our alphabet as before to the binary digits. Using dual code
we can express any number or using ASCII-code we can code numbers and roman
letters. This should be sufficient to formulate any algorithm.

Now we need to show that we can compute any formula. It is known from Mathematics
that arithmetic operation can all all be expressed with the four basic calculating operations
(addition, subtraction, multiplication, division). The derivation of a function f at point x for
instance is computed as limit of the expression:

f ′(x) := lim
e→0

(f (x + e) − f (x − e))/2 ∗ e(e > 0)

if the limit exists.
This is not a proof but an example where a higher operation is expressed (here defined)

by elementary operations.
Division can be reduced to multiplication of the reciprocal and multiplication is noting

than repeated addition. Furthermore the addition of integer numbers like 3 + 2 results from
the incrementing the number 0 first 3 and then 2 times.

All we need to show is, that we can store the number 0 on the band and are able to
increment a number.

To store 0 is very simple. When the Turing machine is started, the head is under the
leftmost nonempty position. We write there the value 0 and change the initial state to next
and move one cell right. We read the next value and if it is now empty (t) then we write
empty on the band and move right again. This is repeated until the value read is empty
where we set the state to halt and terminate the program.

The result on the band is one 0 and empty (t) to the left and right.
Let the numbers be written on band with the least significant bit to the leftmost position

and let the significance be 2n for position n(n > 0) to right. To show that we can increment
an even value is trivial because we just write the digit 1 to the start position and stop the
program. For odd and even numbers we present the flow chart in Figure 13.3 and the state
table as alternative notation in Figure 13.4.

224 Chapter 13 Models of Sequential Computation

Figure 13.3 Flowchart to increment an odd number with the Turing machine

state 0 1 t

initial (halt,1,n) (next,1,r) n.a.
next (halt,1,n) (next,1,r) (halt,1,n)

Figure 13.4 Transition function for a Turing machine that increments an integer

We will learn an other notation for describing the behavior of machines with a finite
number of states in Section 13.3.

Now that we have shown how to increment a number with the Turing machine we can
do any algorithmic operation, and therefore produce any algorithm. In other words, it is a
universal machine as potential as a real electronic computer in terms of the problems it can
solve. But, real computers are much more complex. The Turing machine does not have any
interactive device or any possibility for interrupts. For theoretical investigations however it
serves as an object of study. Any results we get from there are applicable to a real computer.

13.2 Decidability

The next principal issue we will investigate is the question if we can decide beforehand if
a Turing machine will eventually stop (i.e. reach its halt state) or not. If we could solve this
question theoretically we could proof for any programm if it will terminate or if it will run
in an infinite loop.

This halting problem is closely related to the question what can be computed. If somebody
wants to know if an method of calculation is algorithmic he can try to run it on the Turing
machine. If the machine stops, the problem is decidable. In fact, the German mathematician
David Hilbert believed in 1900 that any mathematical defined problem is decidable. But

13.3 Finite State Machines 225

Kurt Gödel (Austrian mathematician, * 1906, † 1978) proofed in his famous incompleteness
theorem that “any sufficiently complex formal system is either contradictory or incomplete”.
Applied to the question whether all problems (which are sufficiently complex) can be solved
by an algorithm, Gödel’s theorem states that there are problems for which no algorithmic
solution exist, i.e. are undecidable.

The most prominent undecidable problem is the halting problem of the Turing machine:
“Can we create a program that checks any program if it will terminate or not?” The
answer is NO. Turing proved that a general algorithm to solve the halting problem for all
possible inputs is undecidable. Because of its fundamental importance we will sketch the
proof-by-contradiction using pseudo-code. We assume there is a function isHalting that can
test any other program if it terminates.

function isHalting (program, input)
{

if program(input) terminates
then return YES
else return NO

}

Now we construct the program test that takes a program as input:

function test (program)
{

while isHalting(program, program) = YES {do nothing}
}

Finally we run test with itself as parameter:

test (test)

The program test will only terminate when it is not terminating. This is a contradiction
that proofs the impossibility to decide if a program will terminate for all possible inputs.
The meaning of “decide” is that no program can be written that finds out if a arbitrary given
program will terminate for all possible inputs. Applied to the Turing machine, this is the
halting problem which turns out to be undecidable.

13.3 Finite State Machines

A Turing machine is a kind of “automata” that takes an input from the band and runs
autonomously from its initial state via a finite number of other states to a final state. We
have describe the behavior as a state transition table as in Figure 13.2.

We find automata everywhere not only in an abstract Turing machine. Coffee makers,
ticket and soft drink distributers, access control, and gambling automata are some examples.
Characteristic for those machines is that their actions of depend on its current state. Take
a parking ticket distributer, it will only produce a ticket when you have put some coins
into the machine and pressed the “print” button. The behavior of such a machine is best
visualized by a state chart as in Figure 13.5.

The corresponding state matrix is shown in Figure 13.6. The events are put in the first
line and the states are written in the first column. The transitions are marked in the crossing
cells of state and event because the next state is defined by the current state and an event.
Some event/state combinations are “illegal”, i.e. they cannot occur or nothing will happen.
Thats why they are marked with a hyphen (-).

The table notation is handy to program a state machine but the state transition chart is
more human readable.

A finite state machine is an automata that

226 Chapter 13 Models of Sequential Computation

Figure 13.5 State transition diagram of a parking ticket distributer in UML notation

state insert coin abort print ticket time out ticket ready
waiting money inserted - - - -

money inserted money inserted waiting printing waiting -
printing - - - - waiting

Figure 13.6 Transition function matrix for a parking ticket distributer

• accepts a finite set of input data, called events,

• has a finite number of states (incl. one initial state and some final states)

• changes its state in dependence of the input (event) and the current state.

The set of state transitions as described in a state chart or matrix is called a state transition
function d : E × S → S, where E is the set of events and S is the set of states.

If a finite state machine terminates it has received a legal sequence of events. These
events could be symbols of an alphabet for instance. If we interpret the sequence of symbols
as legal words of an formal language the state machine works as syntax checker. It accepts
only legal language elements. Finite state machines are therefore often called cognitive
automata and implemented in compilers. As example consult Figure 13.7 that accepts any
alphanumeric string that is beginning with a letter.

We could describe all possible descriptors with a simple regular expression as
introduced in Section 8.4. If l is a letter and d is a digit then the regular expression is:

descriptor := l(l ∪ d)*.

This is not a coincidence but it can be proved that any finite state machine is equivalent
to an regular expression. There exists a language hierarchy and correspondence between
grammar and automata (see Figure 13.8) that was categorized by Noam Chomsky (* 1928,
professor emeritus of the MIT)

The classification forms an inclusion hierachy: Type-3 ⊂ Type-2 ⊂ Type-1 ⊂ Type-0.
Type-3 grammars define the most simple languages that generate words made of

sequences of symbols (terminals). This is used by text processing. With Type-2 grammars
it is possible to build a language with non-terminals using a kind of parentheses. A Type-1

13.4 Verification 227

Figure 13.7 Finite state machine to identify descriptors that begin with a letter

language class grammar automata
Type-0 unlimited general Turing machine
Type-1 context sensitive Linear-bounded non-deterministic
Type-2 context free stack machine
Type-3 regular finite automata

Figure 13.8 Chomsky hierarchy of languages

grammar produces a language with elements that can be used only in a certain context. This
is the case in most programming languages because the use of a variable depends on its
prior declared type. Type-0 grammars do not restrict the structure of the language.

13.4 Verification

When we build an automata or any software system it is always a big question if the system
will exactly do what is “expected”. The first problem then is to formally specify what is
expected. If we have no formal and unambiguous specification there is now way to make
sure we know exactly what the program should do.

With a formal specification the output of a program is defined as function of the input.
Applying a formal process of verification avoids the risk of inaccurate conclusions that may
occur with intuitive reasoning.

The cardinal problem of this approach is that in general we do not know if our
verification process terminates. In fact, we come back to the problem of decidability (Section
13.2). We have the situation of a mathematical defined problem with input and output but
we do not know if we have an algorithm for it. So there is no guaranty that our verification
will terminate. This is the reason why formal verification (proof) is only possible for small
and simple programs. For complex programs we only test some representative situations
and hope that all other cases behave as well or do not matter.

A formal verification of a program’s correctness is based on the specification. To proof
that a program works correctly we have to assume some input. The preconditions describes
the set of possible input data to start the program. The next step is to follow the propagation
of the input during the processing of the program. Many research has been done to analyze
the program structure in order to see how the output state is affected by the input.

Here a little example: Let a , b be input values and the program shall only consist of the
following if-then-else structure:

228 Chapter 13 Models of Sequential Computation

if (a > b)
then return y := b/a
else return y := a/b

The program should output the value of y. If a , b > 0 then we expect results between 0
and 1. How can we proof this? This is done by two preconditions.

• {a , b | a > b > 0}

• {a , b | 0 < a ≤ b}

As the second precondition is the negation of the first one for any positive value of a and
b there is no other possibility to consider. But there are more cases when we allow negative
values for a or b. Now we have to follow the program flow. In the first case the “if-condition”
is true and the “then-branch” will be executed. This results in a positive y := b/a < 1. In
the second case the “if-condition” is false and the “else-branch” is executed resulting in a
positive y := a/b ≤ 1. We get indeed an output between 0 (excluding 0) and 1.

We formulate the desired output as postcondition and describe it as the set of values
{y | 0 < y ≤ 1}

The formulation of the pre- and postcondition for strictly negative input is left to the
student as an exercise.

13.5 Testing

If we try verify a real program against a formal specification this would turn out to be a
great challenge. So in commercial program development only some typical and important
situations are checked.

This can be done not by a program analysis which is called a structured walkthrough. If
the code is explained by its programmer to an other expert this is called code review or code
inspection.

The other possibility of testing is to run the program or part of it with test input. In both
cases it is characteristic that there is no proof of correctness. Testing only checks a program
partially, but hopefully all relevant situations. There is an empirical argument discovered
by the sociologist Vilfredo Pareto (* 1848, † 1923) that in that time “20% of population
possessed 80% of the wealth”. This statement has been generalized later by Joseph M. Juran
to the Pareto principle. Applied to the testing of programs it is assumed “that we can find 80%
of the errors with 20% of effort”. This relationship between effort and result is visualized in
Figure 13.9.

Testing is classified mainly in two categories:

• black-box testing

• white-box testing

A black-box test is a pure input/output test. We supply some input to the program, module,
or function and see if it reacts or gives output as desired. The test input is not based on
the program structure. To avoid a lot of unnecessary input as so call boundary value analysis
can help to reduce the amount of input cases. For example if the program is expected to
accept values between 0 and 1 then the boundary values and values slightly outside the
boundaries are taken for testing.

Black-box testing is usually done by the people who are not programmers but users.
They need no understanding of the internals of a program.

Black-box testing has become popular with the software development methodology
called eXtreme Programming (XP). Following XP this black-box testing is called unit tests. A

Review Terms 229

Figure 13.9 Pareto principle (80:20 rule)

unit test is created by the programmer prior to the development of the function or class
itself. This is called test first in XP.

The programmer supplies all input values and states the postconditions (here called
assertions) and the unit test framework generates the test environment. The test can be run
by just pressing a start button. The programmer stops developing the function or class
when the unit test is passed. This automated unit testing is also useful when a software is
developed under a “collective code ownership”. A programmer may change or extend the
code as long as all unit tests are passed.

The white-box testing requires insight into the program, module, or function under test.
This is why only programmers do this testing. The input for the tests is chosen fully aware
of the program structure. If we consider our if-then-else example of the previous section
we understand that for positive a and b we have to check both cases, where a > b > 0
and its negation. So white-box testing is closer to verification and can cover situations that
otherwise would not be considered.

White-box testing is usually done on a function or class level, compared to black-box
testing that is done mainly on a program or module level.

13.6 Summary

Review Terms

• Turing machine

◦ band

◦ empty cell

◦ read/write head

◦ control unit

◦ state (initial, halt)

• Church’s hypothesis

• computable function

• Decidability

◦ halting problem

◦ proof by contradiction

◦ control unit

230 Chapter 13 Models of Sequential Computation

◦ state (initial, halt)

• finite state machine

◦ event

◦ state transition

◦ state transition function

◦ cognitive automata

• Chomsky hierarchy

• verification

◦ precondition

◦ postcondition

◦ assertion

• Pareto priciple

• testing

◦ black-box

◦ white-box

◦ structured walkthrough

◦ code inspection

◦ code review

◦ boundary value analysis

• eXtreme Programming (XP)

◦ unit test

◦ test first

Exercises

13.1 Show that the summation algorithm of Chapter 2, Figure ?? has a space complexity
of O(1). State more precisely the constant const in storage cell units for the given
implementation in Figure ??.

13.2 Specify pre- and postcondition for the following program structure:
switch (a)

case (a > 0): return y := 1/a
case (a = 0): return y := a
case (a < 0): return y := −1/a

Bibliographical Notes

Turing reformulated in his seminal work “On Computable Numbers, with an Application to
the Entscheidungsproblem” Turing published in 1936 the results from Kurt G"odel. Turing
proofed that any mathematical problem could be solved by his machine if an algorithm
exists. This result was even more astonishing because at that time there was no computer
available.

There are many good books available on theoretical computer science, namely van
Leeuwen [ed] (1994), Hromkovic [2004], and Sch , but a much more entertaining introduction
to formal languages and recursion is the book of Douglas R. Hofstadter Hofstadter [1980].

Much can be found about XP on the Web Wells , Jeffries an about their creators Kent
Beck, Ward Cunningham and Ron Jeffries N. .

