
SQL Access Patterns for Optimistic Concurrency
Control

Fritz Laux
Fakultät Informatik

Reutlingen University
D-72762 Reutlingen, Germany

fritz.laux@reutlingen-university.de

Martti Laiho
Dept. of Business Information Technology

Haaga-Helia University of Applied Sciences
FIN-00520 Helsinki, Finland
martti.laiho@haaga-helia.fi

1 Abstract—Transaction processing is of growing importance
for mobile and web applications. Booking tickets, flight reserva-
tion, e-Banking, e-Payment, and booking holiday arrangements
are just a few examples. Due to temporarily disconnected
situations the synchronisation and consistent transaction pro-
cessing are key issues. To avoid difficulties with blocked trans-
actions or communication loss several authors and technology
providers have recommended to use Optimistic Concurrency
Control (OCC) to solve the problem. However most vendors of
Relational Database Management Systems (DBMS) implemented
only locking schemes for concurrency control which prohibit
the immediate use of OCC. We propose Row Version Verifying
(RVV) discipline to avoid lost updates and achieve a kind of
OCC for those DBMS not providing an adequate non-blocking
concurrency control. Moreover, the different mechanisms are
categorized as access pattern in order to provide programmers
with a general guideline for SQL databases. The proposed SQL
access patterns are relevant for all transactional applications
with unreliable communication and low conflicting situations. We
demonstrate the proposed solution using mainstream database
systems like Oracle, DB2, and SQLServer.

I. INTRODUCTION

Mobile applications enable users to execute business trans-
actions while being on the move. It is essential that tem-
porary disconnected situations do not compromise transac-
tion properties or block database resources on the server.
To prevent blocked resources researchers have intensively
studied OCC [1], [2], but no commercial database product
has implemented this mechanism, yet. With the popularity
of multitier software architectures technology vendors like
those for J2EE platforms, object relational mappers or Service
Oriented Architecture (SOA) have proposed to use OCC to
solve the problem.

But shifting the burden to the middleware is a tricky task.
The designer and implementer of a transactional application
have to leave the DBMS unaware of the user transaction
to avoid the automatic locking of data for an unpredictable
time. On the other hand, concurrent transactions of different
applications may interfere without the possibility for any help
by the DBMS. Therefore the applications and the DBMS need

1This paper is the result of collaborative work undertaken along the lines of
the DBTechNet Consortium. The authors participate in DBTech EXT, a project
partially funded by the EU LLP Transversal Programme (Project Number:
143371-LLP-1-2008-1-FI-KA3-KA3MP)

to co-operate somehow to ensure that at least the lost update
problem will be avoided.

A typical fault in multi-user file-based systems without
proper concurrency control is the lost update problem i.e.
a record x updated by some process A will be over-
written by some other concurrent process B like in the
following problematic canonical schedule [4, pp. 62-63]:
rA(x), rB(x), wA(x), wB(x), where rT (x) and wT (x) denote
read and write operations of transaction T on data item x .

A properly used DBMS would not allow such a situation to
happen because it would lock x for transaction A and prevent
B from accessing x before A commits or aborts. But, if the
database does not receive a termination request, e.g. because
of a communication failure, the record x remains blocked.

We do not want to risk blocked data, therefore a kind of
OCC should be applied. Even if the DBMS does not support
OCC directly we will show that it could help the application to
detect concurrency conflicts. For relational databases we will
show how this can be achieved using a row version column
for every table and specific access patterns.

A. Structure of the Paper

After a motivation for our approach and the related work
we present in Section II the lost update problem by example.
Section III describes three SQL patterns that solve the problem
and in Section IV we provide an implementation for a server
side row version column to support OCC for mainstream SQL
databases. In Section V we conclude our findings.

B. Motivation

Kung and Robinson [1] distinguishes three phases of a
transaction when OCC is used:

• read phase
• validation phase
• write phase
The first phase includes user input and thinking time. It

may last for an unpredictable time span. The following phases
are without any user interaction. Validation and write phases
are therefore very short in the range of milliseconds. The last
two phases are critical in the sense that exclusive access is
required. Failing to do so could result in inconsistent data,
e.g lost update. A Relational Database Management System

2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns

978-0-7695-3862-4/09 $26.00 © 2009 IEEE

DOI 10.1109/ComputationWorld.2009.63

254

(RDBMS) could help to support each phase by choosing the
proper transaction isolation level. The read phase should read
only valid data (READ COMMITTED) and transaction mode
can be set to READ ONLY. Switching to a strong enough
isolation level (REPEATABLE READ, SNAPSHOT, or SE-
RIALIZABLE) during validation and write phases will yield
the corresponding transaction properties against competing
transactions (see Fig. 1).

The transaction isolation level may only be altered before
or as the first statement of a transaction. This implies that our
user transaction has to be split up into two database/SQL trans-
actions. Each SQL transaction should be set to the isolation
levels as recommended before. During the validation phase the
application has to re-read the data and check for any changes
by concurrent transactions. If any changes are detected, then
the transaction has to abort else it may proceed with the write
phase.

Applying OCC to the previous example the result would be
the following history: rA(x), rB(x), valA, wA(x), valB , aB ,
where valA denotes the validation of transaction A and aB

denotes the abort command for transaction B.
Or, if transaction A decides to abort then B will be success-

ful with rA(x), rB(x), aA, valB , wB(x). In either case only
one of the competing transactions can be successful.

This example also shows that the non blocking concurrency
control comes for the prize of transaction aborts.

Instead of optimistic concurrency control theories presented
in database textbooks, we are interested in ways how to imple-
ment such a mechanism using mainstream DBMS systems and
what application developers need to understand about reliable
access of databases.

We therefore extend the read-write model as used by
Herbrand’s semantic (see [4], [14], [15]) to fit with the OCC
mechanism. If the validation is not passed successfully then the
write phase will be skipped, leading to an aborted transaction.
Instead of having validation valT (x) and write wT (x) we
introduce a conditional write operation w(x, k). This write
operation on the data item x is only executed if the condition
k evaluates to true. Checking k may require to read the actual
database state. Reading, checking k, and writing x do not
allow any parallel operations as explained above.

In this paper we present access patterns that implement this
w(x, k) operation. A simple example of implementation would
use solely the SQL update command:

UPDATE table SET X = val WHERE k AND id(x)

where id(x) evaluates to true only for the row of data item x.

C. Related Work

Concurrency control is a cornerstone of transaction process-
ing, it has been extensively studied for decades. Namely Gray
and Reuter [3] studied locking schemes, whereas Kung and
Robinson [1] developed optimistic methods for concurrency
control. Unland [2] presents OCC algorithms without critical
section. Using these algorithms would allow relaxed isolation
levels but involve checking the read set against all concurrent

TABLE I
A LOST UPDATE SCENARIO USING SELECT-UPDATE IN TRANSACTION A

step process A balance process B
1 SET TRANSACTION

ISOLATION LEVEL
READ COMMITTED

2 1000e
3 SELECT BALANCE

INTO :BALANCE
FROM ACCOUNTS
WHERE ACCTID = :ID;

4
5 NEWBALANCE = UPDATE ACCOUNTS

BALANCE - 100 SET BALANCE =
BALANCE - 200
WHERE ACCTID = :ID;

6 800e COMMIT;
7 UPDATE ACCOUNTS

SET BALANCE =
:NEWBALANCE
WHERE ACCTID = :ID;

8 COMMIT; 900e

transactions. Because the application is not aware of concur-
rent transactions its use can be ruled out in our case.

A higher concurrency for query intensive transactions pro-
vide Multiversion Concurrency Control (MVCC) as described
by Stearns and Rosenkrantz [18] and Bernstein and Goldman
[19]. If we check the MVCC method for its usability for web
or mobile transaction processing it is even worse than locking
in terms of resource consumption. While locking needs to
record only the id of the item locked, the MVCC needs to store
a version each time an item is updated that was read by an
active transaction prior to the update. In case of disconnected
situations this may lead to large number of versions for a single
data item.

With the dissemination of middleware OCC has been rec-
ommended by IT-vendors ([20], [21], [22]) for transactional
e-business and m-commerce applications but little concern
have been spend on how this can be achieved using com-
mercial SQL databases [7]. Heß[20] simply uses Hibernate’s
optimistic-lock=”version” option but does not mention the risk
of legacy applications not under control of Hibernate which
could still lead to lost updates. Nock [6] uses a timestamp
column with Java timestamp resolution ignoring the fact that
contemporary database products can produce more than a
hundred times the same timestamp [7]. Akbar-Husain [21]
believes that demarking the method that checks the version
with the required transaction attribute will be sufficient to
avoid lost updates. He fails to tell that only a strong enough
isolation level will achieve the desired results.

II. LOST UPDATE PROBLEM IN THE APPLICATION
CONTEXT

Let us consider first the following problematic scenario
of SQL transactions of two concurrent processes A and B
updating the balance of the same account in Table I.

The withdrawal of 200 made by the transaction of B will be
overwritten by A, in other words the update made by B in step

255

Fig. 1. Context of the OCC Access Patterns

5 will be lost in step 7 when the transaction of A overwrites
the updated value by value 900 which is based on stale data i.e.
outdated value of the balance from step 3. If the transactions
of A and B serialized properly, the correct balance value after
these transactions would be 700, but there is nothing that the
DBMS could do to protect the update of step 5 since the
guilty party to this lost update problem is the programmer of
process A, who has ordered a wrong isolation level from the
DBMS. READ COMMITTED, which for performance reasons
is the default transaction isolation level used by most RDBMS
systems, does not protect any data read by transaction of
getting outdated right after reading the value. Locking Scheme
Concurrency Control (LSCC) prevents conflicting access to
data. Conflicts are defined in terms of isolation levels. The
proper isolation level on LSCC systems to prevent a lost
update should be REPEATABLE READ or SERIALIZABLE,
which would protect the values read in the transaction from
getting outdated during the transaction by holding shared locks
on these rows up to the end of the transaction. The isolation
service of the DBMS does guarantee that the transaction will
either get the ordered isolation or, in case of serialization
conflict, the transaction will be rejected by the DBMS. The
means used for this service and the transactional outcome for
the very same application code can be different when using
different DBMS systems, and even in using different table
structures. A LSCC may as well delay to grant a lock request
until the possible conflict disappears. Usually a transaction
rejected due to a serialization conflict should be retried by the
application, but we will discuss this later.

The erroneous scenario above would also be the same if
process A commits its transaction of steps 1 and 3 (let us call
it transaction A1) in step 4, and continues (for example after
some user interaction) with another transaction A2 of phases
7-8. In this case, no isolation level can help, but transaction A2
will make a blind write (based on stale data, insensitive of the
current value) over the balance value updated by transaction
B.

III. SQL ACCESS PATTERNS FOR AVOIDING LOST
UPDATES

The blind write of the update transaction A2 of phases 7-8
(resulting in the lost update of transaction B) could have been
avoided by any of the following practice. The access patterns
apply to the validation and write phase (process A2) as shown
in Figure 1. We present the patterns in the canonical form

given by Coplien [23] that is shorter and more essential than
the one used by Gamma et al [5]:

A. Access Pattern: Sensitive UPDATE

Problem: How to prevent a lost update in case of concurrent
updates without using explicit locks.

Context: Concurrent transaction processing in distributed
systems has to deal with temporary disconnected
situations and nevertheless ensure correct results.

Forces:
• Using locks to prevent other transactions from changing

the value can block data items for unpredictable time in
case of communication failure or in case of long user
thinking time.

• Using multiversion concurrency control (MVCC) or OCC
which do not block data access lead to abort conflicting
transactions except for the first one that updates the data.

• OCC is not supported by commercial SQL databases,
hence we cannot directly use DBMS support.

Solution: There is no risk of lost update if A2 in step 7
uses the form of the update which is sensitive to the
current value, like B uses in step 5 as follows:

UPDATE Accounts
SET balance = balance - 100
WHERE acctId = :id;

Consequences: It should be noted that the update of the
balance is based on a value that is not seen by
the application and therefore the user will not be
aware of the changed balance. So, this access pattern
does not provide repeatable read isolation. If the user
needs to know about the changed situation the access
pattern ”Re-SELECT .. UPDATE” could be used (see
below).

B. Access Pattern: Conditional UPDATE

Problem: How to prevent a lost update and provide
repeatable-read for a user transaction in case of
concurrent updates without using locking.

Context: The ”Sensitive UPDATE” pattern in concurrent
read situations may result in non-repeatable phe-
nomenon.

Forces: Same as for ”Sensitive UPDATE” plus:
• The data value read and displayed to the user may not be

the same on which the update is based (non-repeatable
read phenomenon).

Solution: After transaction A1 first has read the original row
version data in step 3, transaction A2 verifies in step
7, using an additional comparison expression in the
WHERE clause of the UPDATE command, that the
current row version in the database is still the same
as it was when the process previously accessed the
account row, for example,

UPDATE Accounts
SET balance = :newBalance

256

WHERE acctId = :id AND
(rowVersion = :old rowVersion);

The comparison expression can be a single com-
parison predicate like in the example above where
rowVersion is a column (or a pseudo-column pro-
vided by the DBMS) reflecting any changes made in
the contents of the row and :old rowVersion is a host
variable containing the value of the column when the
process previously read the contents of the row. In
the case that more than one column is involved in the
comparison, the expression can be built of version
comparisons of all columns used and based on the
3-value logic of SQL.

Consequences: Since this access pattern does not explicitly
read data, there is no need to set isolation level. The
result of the concurrency control services is the same
for locking scheme concurrency control (LSCC)
and multiversion concurrency control (MVCC) based
DBMS. The result of the update depends on the row
version verifying predicate, and the application code
needs to evaluate the return code to find out the
number of updated rows to verify the result.

C. Access Pattern: Re-SELECT .. UPDATE

Problem: How to provide repeatable-read for a user trans-
action in case of concurrent updates without using
locks. Signal the user if conflicting transactions have
changed the read set.

Context: ”Conditional UPDATE” pattern does not allow
to inform the user of the changed read set before
aborting the transaction.

Forces: Same as for ”conditional UPDATE” plus:
• In the time span between the re-SELECT and the UP-

DATE statement the data read may be updated again by
concurrent transactions. In the worst case, this can lead
to an infinite loop.

• Executing the pattern in repeatable read isolation may
force the transaction to abort if no locking is used.

Solution: This is a variant of the ”conditional UPDATE”
pattern in which transaction A2 first reads the current
row version data from the database into some host
variable current rowVersion which allows the appli-
cation to inform the user of the changed situation:

SELECT rowVersion
INTO :current rowVersion
FROM Accounts
WHERE acctId = :id;
// ... inform the user if desired

and then apply the conditional update:
if (current rowVersion = old rowVersion) then

UPDATE Accounts
SET balance = :newBalance
WHERE acctId = :id ;

To avoid repeatedly re-SELECT, it is necessary to
make sure that no other transaction can change the

row between the SELECT and the UPDATE. For this
purpose, we need to apply a strong enough isolation
level (REPEATABLE READ, SNAPSHOT, or SE-
RIALIZABLE) or explicit row-level locking, such
as Oracle’s FOR UPDATE clause in the SELECT
command.

Consequences: Since isolation level implementations of
LSCC and MVCC based DBMS are different, the
result of concurrency services can be different: In
LSCC based systems the first writer of the row
or reader using REPEATABLE READ or SERIAL-
IZABLE isolation level will usually win, whereas
in MVCC based systems the first writer wins the
concurrency competition.

IV. RVV DISCIPLINE AND SERVER SIDE STAMPING

The last access pattern doesn’t require any locking before
transaction step 7 (start of A2). This update method is gener-
ally known as ”Optimistic Locking” [6], but we prefer to call it
Row Version Verification (RVV) Discipline. There are multiple
options for row version verification, including comparison of
original contents of all or some relevant subset of columns
of the row, a checksum of these, a technical SQL column, or
some technical pseudo-column maintained by the DBMS.

A general solution for row version management is to include
a technical row version column rv and to use a row-level
trigger to increase the value of column rv on any row automat-
ically every time the row is updated. We call the use of trigger
or use of technical pseudo-column as ”server-side stamping”
which no application can bypass, as opposite to client-side
stamping using the SET clause within the UPDATE command
- a discipline that all applications should follow in that case.
Row-level triggers are affordable, but have performance cost of
some percents in execution time on Oracle and DB2, whereas
SQL Server does not even support row-level triggers.

Timestamps are typically mentioned in database literature
as a means of differentiating any updates of a row. However,
our tests [7] prove that, for example, on a 32bit Windows
workstation using a single processor Oracle 11g can generate
up to 115 updates having the very same timestamp. Almost
the same problem applies to DATETIME of SQL Server 2005
and TIMESTAMP of DB2 LUW 9, with exception of the
new ROW CHANGE TIMESTAMP option in DB2 9.5 which
generates unique timestamp values for every update of the
same row having technical TIMESTAMP column.

The native TIMESTAMP data type of SQL Server is not
a timestamp but a technical column which can be used to
monitor the order of all row updates inside a database. We
prefer to use its synonym name ROWVERSION. This provides
the most effective server-side stamping method in SQL Server;
although, as a side-effect it generates an extra U-lock which
will result in a deadlock in the example of Figure I.

In version 10 and later versions, Oracle provides a new
pseudo-column ORA ROWSCN for rows in every table cre-
ated with the ROWDEPENDENCIES option [8]. This will
show the transaction’s System Change Number (SCN) of the

257

last committed transaction which has updated the row. This
provides the most effective server-side stamping method for
RVV in Oracle databases, although as a harmful side-effect,
the row-locking turns its value to NULL.

In our ”RVV Paper” [7], we have presented an SQL view
as solutions for mapping these technical row version column
contents into BIGINT data type for Row Version Verification
(RVV) at the client-side.

V. CONCLUSION

The concurrency control by DBMS treats SQL transactions
without their application context in line with Herbrand se-
mantics, and this is the typical scope of database textbooks
in teaching transaction programming. We see the need to
expand this scope to the application level, to typical user
transactions which are the context for SQL transactions. Even
if the widely accepted Design Patterns of GoF [5] do not
even mention database transactions, we can identify and build
practical Data Access Patterns to be used for teaching Data
Access Technologies.

Modern application architectures have introduced new prac-
tices and needs which have outdated some practices of earlier
SQL programming like locking and holdable cursors. Com-
mercial database management systems do not yet support
OCC which is needed for mobile and web-applications. So,
for example, we had to develop access patterns for optimistic
locking services on the user level. We presented three of these
patterns and showed how far current DBMS can support it.

REFERENCES

[1] H. T. Kung and J. T. Robinson, ”On Optimistic Methods for Concurrency
Control” ACM Transactions on Database Systems (TODS) 6(2), 1981,
pp. 213-226

[2] R. Unland, ”Optimistic Concurrency Control Revisited”, Arbeitsbericht
31, Institut für Wirtschaftsinformatik der Westfälischen Wilhelms-
Universität Münster, 1994

[3] J. Gray and A. Reuter, ”Transaction Processing: Concepts and Tech-
niques”, Morgan Kaufmann, 1993

[4] G. Weikum and G. Vossen, ”Transactional Information Systems”, Mor-
gan Kaufmann Publishers, 2002

[5] E. Gamma et al ”Design Patterns, Elements of Reusable Object-Oriented
Software”, Addison-Wesley, 1994

[6] C. Nock, ”Data Access Patterns”, Addison-Wesley, 2004
[7] M. Laiho and F. Laux, On Row Version Verifying (RVV) Data Access

Discipline for avoiding Lost Updates”,
URL: http://www.DBTechNet.org/papers/RVV Paper 080709.pdf, last
access: 08/20/09

[8] Oracle, ”SQL Language Reference 11g Release 1 (11.1)”, B28286-01,
July 2007

[9] Microsoft Corp., ”SQL Server 2005 Books Online”,
URL: http://msdn.microsoft.com/en-gb/library/ms130214.aspx, last ac-
cess: 08/20/09

[10] IBM, ”DB2 Version 9.5 for Linux, UNIX, and Windows, Windows, SQL
Reference, Volume 1”, March 2008, SC23-5861-010

[11] H. F. Nielsen and D. LaLiberte, ”Editing the Web: Detecting the Lost
Update Problem Using Unreserved Checkout”, W3C NOTE, May 10,
1999,
URL: http://www.w3.org/1999/04/Editing/, last access: 08/20/09

[12] M. Evans and S. Furnell, ”A web-based resource migration protocol
using WebDAV”, WWW ’02: Proceedings of the 11th international
conference on World Wide Web, May 2002

[13] C.J. Date, ”An Introduction to Database Systems”, 7th Edition. Addison-
Wesley Longman, 2001.

[14] R. Elmasri and S.B. Navathe, ”Fundamentals of Database Systems”, 4th
Edition, Addison Wesley, 2003.

[15] K.P. Eswaran et al, ”The notions of consistency and predicate locks in
a database system”. Communications of the ACM 19, 11 (Nov. 1976),
624-633.

[16] V. Hadzilacos, ”A Theory of Reliability in Database Systems”, Journal
of the ACM 35, pp. 121-145.

[17] C. H. Papadimitriou, ”The Theory of Database Concurrency Control”,
Computer Science Press, Rockville, MD, 1986.

[18] R. E. Stearns and D. J. Rosenkrantz, ”Distributed Database Concur-
rency Controls Using Before-Values”, In Proceedings ACM SIGMOD
International Conference on Management of Data, pp. 74-83, 1981.

[19] P. A. Bernstein and N. Goodman, ”Multiversion Concurrency Control
– Theory and Algorithms”, ACM Transactions on Database Systems 8,
pp. 465-483, 1983.

[20] M. Heß, ”Lange Gespräche mit Hibernate”,
URL: http://www.ordix.de/ORDIXNews/2 2007/Java J2EE JEE/
hibernate long conversation.html, last access: 08/20/09

[21] Y. Akbar-Husain, ”Optimistic Locking pattern for EJBs”,
http://www.javaworld.com/jw-07-2001/jw-0713-optimism.html, last ac-
cess: 08/20/09

[22] L. DeMichiel and M. Keith, ”JSR 220: Enterprise JavaBeans, Version
3.0, EJB Core Contracts and Requirements, Sun Proposed Final Draft,
Dec. 18, 2005

[23] J. O. Coplien, ”A Generative Development-Process Pattern Language”,
in J.O. Coplien and D.C. Schmidt (eds.), Pattern Languages of Program
Design, Addison-Wesley, 1995

258

