
Selective In-Place Appends for Real:
Reducing Erases on Wear-prone DBMS Storage

Sergey Hardock∗, Ilia Petrov†, Robert Gottstein∗, Alejandro Buchmann∗
∗Databases and Distributed Systems Group, TU-Darmstadt, Germany

Email: {hardock; gottstein; buchmann}@dvs.tu-darmstadt.de
†Data Management Lab, Reutlingen University, Germany

Email: ilia.petrov@reutlingen-university.de

Abstract—In the present paper we demonstrate the novel
technique to apply the recently proposed approach of In-Place
Appends – overwrites on Flash without a prior erase operation.
IPA can be applied selectively: only to DB-objects that have
frequent and relatively small updates. To do so we couple IPA
to the concept of NoFTL regions, allowing the DBA to place
update-intensive DB-objects into special IPA-enabled regions. The
decision about region configuration can be (semi-)automated by
an advisor analyzing DB-log files in the background.

We showcase a Shore-MT based prototype of the above
approach, operating on real Flash hardware. During the demon-
stration we allow the users to interact with the system and gain
hands-on experience under different demonstration scenarios.

Video: https://youtu.be/GMKCoZmSZ4Y

I. INTRODUCTION

In-Place Appends (IPA) [1] is a recently proposed approach
handling two common types of write-amplification (WA).
DBMS WA reflects flushing of the whole 4-32KB DB-page
even if only few bytes on it are changed, while the SSD on-
device WA is caused by page migrations due to the internal
garbage collection. The basic idea of the approach is to
transform small in-place updates performed by DBMS trans-
actions into delta-records upon page eviction. Furthermore,
those delta-records are appended to a reserved area on the very
same physical Flash pages along with the original content. We
utilize the commonly ignored fact that under certain conditions
physical Flash pages can be updated in-place without a prior
erase operation. Thus, by relaxing the erase-before-overwrite
principle of Flash memory we can significantly reduce the
number of page invalidations and out-of-place updates. More-
over, this results in reduction of GC overhead (page migrations
and erase operations) and consequently in decrease of I/O
response times. In addition, the DBMS WA is reduced by a
newly defined command write delta, which allows the DBMS
to write out only the delta-records instead of whole pages.

The approach presented here is implemented and evaluated
as part of NoFTL [2], [3]. The main concept behind NoFTL is
to integrate Flash management into the DBMS (Figure 1). The
access to rich DBMS run-time information and statistics allows
for significant optimization of the Flash management function-
ality. Moreover, NoFTL allows native DBMS subsystems (e.g.
buffer and storage management) to benefit from controlled data
placement and knowledge of the internal Flash organization.
In [3] we introduce the notion of NoFTL regions, which we
utilze currently to apply IPA selectively to specific DB objects
(or sets thereof).

Tablespace tsIPA

Storage Manager

N
a

ti
v

e
 F

la
s

h
 I

n
te

rf
a

c
e

:
(R

e
a

d
/P

ro
g

ra
m

 P
a

g
e

,
E

ra
s
e

 B
lo

c
k
,

C
o

p
y
b

a
c
k
,

h
a

n
d

le
 P

a
g

e
 M

e
ta

d
a

ta
)

Free Space Mngr.

 B

u
ff

e
r

M
a

n
a
g

e
r

DBMS

N
a

ti
v
e

 F
la

s
h

P
C

Ie
,

S
A

T
AAddress Translation

Out-of-place updates

GC WL
Bad Block

Manager

Table T t_id

..
.

rgNoIPA

NAND

NAND

Region

rgIPA

NAND

NAND

IPA

Advisor

Log Files

DBA

Fig. 1. NoFTL Architecture with Regions supporting IPA.

For instance, write-intensive tables or indexes dominated
by small updates can be placed in a region that uses IPA
(e.g. region rgIPA in the example below). Read-only objects
or objects dominated by large updates can be placed in yet
another region, which does not utilize IPA and relies only on
out-of-place updates. The presented solution incurs negligible
or no extra DBA complexity, due to the integration of IPA
to regions and coupling to existing logical database storage
structures (e.g. tablespaces). Using the IPA advisor proposed
here the decision regarding the proper IPA-region configuration
is taken in a highly automated manner.

CREATE REGION rgIPA(MAX_SIZE=32G,MAX_CHIPS=4,
MAX_CHANNELS=2, IPA_MODE = pSLC);

CREATE TABLESPACE tsIPA (
REGION=rgIPA, EXTENT SIZE 128K);

CREATE TABLE T (t_id INT) TABLESPACE tsIPA;
CREATE INDEX I ON T(t_id) TABLESPACE tsIPA;

II. DEMONSTRATION

During the demonstration we introduce the audience to
basics of the proposed approach and let them explore it interac-
tively on real hardware. The demonstration system consists of
the OpenSSD Flash research platform [4] (Figure 2) connected
to a host PC running the Shore-MT storage engine1. Using an
intuitive GUI (Figure 3) the audience can configure a sequence
of tests and experience live the performance advantages of the

1https://sites.google.com/site/shoremt/

Fig. 2. OpenSSD Flash research board.

Fig. 3. GUI for the evaluation of selective IPA.

selective use of IPA based on the utilization of NoFTL regions.
The proposed demonstration scenarios are as follows.

a) Demo-Scenario 1 – Baseline: The audience picks
one of the three available OLTP benchmarks (TPC-B, TPC-
C or TATP), selects the desired scaling factor (limited by
64GB of Flash storage) and the duration of the test. The
DBMS executes the benchmark using the traditional approach
as a baseline, i.e. without IPA and without utilization of
regions. During the run of the benchmark the user can observe
the current transactional throughput. After the benchmark is
finished - the detailed statistics of performed I/Os are shown.

b) Demo-Scenario 2 – IPA log-analyzer: In this sce-
nario we the audience interacts with the IPA log-analyzer.
The log-analyzer is designed to assist the DBA in taking the
right decision regarding the application of IPA. By analyz-
ing the DBMS log files (e.g. those resulting from from the
baseline scenario) it produces comprehensive statistics about
the distribution of updates and their sizes for the duration of
the whole workload (see example on Figure 3), as well as
for each particular DB-object. Moreover, the IPA log-analyzer
allows to examine the skew characteristics of the workload.
Based on those statistics the DBA can easily decide which
database objects would benefit from IPA and what IPA-region
configuration would be the most appropriate for the current
workload.

c) Demo-Scenario 3 – IPA without Regions: In this
scenario the audience examines the application of IPA to all
database objects (global application of IPA). After the main
parameters of IPA have been selected (based on the statistics
from the IPA log-analyzer), and the Flash SSD is completely
formatted (low-level formatting) the benchmark is run with the

same scaling factor and for the same duration as in the baseline
test. Although under this scenario the reduction of the garbage
collector overhead is the highest, in the average case it doubles
the space overhead compared to the selective application of
IPA. Thus, DB-sizes increase in those experiments by up to
10% as compared to the baseline. This is due to reserving
space for delta-record area in each db-page. Although the
global application of in-page appends is rather impractical,
together with baseline scenario it represents another extreme,
with respect to the decision about which regions (i.e. db-
objects) IPA should be applied to.

d) Demo-Scenario 4 – Selective IPA using Regions:
Using the GUI and the results from the three preceding
scenarios the audience creates a multi-region data placement
configuration and configures, which regions should support
IPA (and in which mode), and which not. This decision
is practically a trade-off between the reduction of garbage
collection overhead, the longevity and the increase of DB-size
(up to 10% max.). The audience can compare the output results
of three approaches (throughput, I/O statistics).

TABLE I. TATP: TRADITIONAL APPROACH VS. IPA WITH REGIONS.tatp-edbt

Page 1

Out-of-Place Writes vs. IPA 100/0 55/45
Host Reads (16KB) 5 576 036 6 185 809 +11
Host Writes (16KB) 487 257 540 311 +11
GC Page Migrations 445 348 234 356 -47
GC Erases 5 931 2 803 -53
GC Pg. Migrations per Host Write 0.9140 0.4337 -53
GC Erases per Host Write 0.0122 0.0052 -57
Transactional Throughput 277 306 +11

0x0
Absolute

IPA [2*3]
with regions

Absolute

IPA [2*3]
with regions
Relative [%]

For instance, Table I shows the comparative results from
a TATP benchmark run for two hours on the OpenSSD board
(during the demonstration the durations of 5 or 10 minutes are
sufficient for a comparison). The experiments were performed
without In-Place Appends (column “0x0”) and with IPA using
regions. The latter case uses the data placement configuration
with two regions: one for Subscriber and Special Facility ta-
bles with enabled IPA, and another region for the all remaining
tables without IPA support. The configuration with IPA and
regions outperforms the baseline approach by executing 57%
less erases and 53% less GC page migrations per host write.
This reduction of GC overhead has two major advantages: (i)
the increase of the transactional throughput (11%), and (ii)
doubling the Flash SSD lifetime.

REFERENCES

[1] S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann, “From in-place
updates to in-place appends: Revisiting out-of-place updates on flash,”
in accepted at SIGMOD 2017.

[2] ——, “Noftl: Database systems on ftl-less flash storage,” in Proc.
VLDB’13.

[3] ——, “Revisiting dbms space management for native flash,” in Proc.
EDBT, 2016.

[4] “The openssd project,” http://www.openssd-project.org/wiki/The
OpenSSD Project, 2014.

