DBMS on Modern Storage Hardware

Ilia Petrov *!, Robert Gottstein #2, Sergej Hardock #*

* Reutlingen University, Germany
lilia .petrov@reutlingen-university.de

Technical University Darmstadt, Germany
2 gottstein@dvs.tu-darmstadt.de
3hardock@dvs.tu-darmstadt .de

Abstract—In the present tutorial we perform a cross-cut
analysis of database systems from the perspective of modern
storage technology, namely Flash memory. We argue that neither
the design of modern DBMS, nor the architecture of Flash storage
technologies are aligned with each other. The result is needlessly
suboptimal DBMS performance and inefficient Flash utilization
as well as low Flash storage endurance and reliability.

We showcase new DBMS approaches with improved algo-
rithms and leaner architectures, designed to leverage the proper-
ties of modern storage technologies. We cover the area of transac-
tion management and multi-versioning, putting a special empha-
sis on: (i) version organisation models and invalidation mecha-
nisms in multi-versioning DBMS; (ii) Flash storage management
and especially on append-based storage in tuple granularity; (iii)
Flash-friendly buffer management; as well as (iv) improvements
in the searching and indexing models. Furthermore, we present
our NoFTL approach to native Flash access that integrates parts
of the Flash-management functionality into the DBMS yielding
significant performance increase and simplification of the I/O
stack. In addition we, cover the basics of building large Flash
storage for DBMS and revisit some of the RAID techniques and
principles.

I. STRUCTURE AND ORGANIZATION OF THE TUTORIAL

We intend to present a 1.5 hour tutorial on the above topic
(the material can be easily extended to 3 hours, if required by
the organisers). The target audience is database researchers
and practitioners with interests in data management on
modern storage hardware. The proposed tutorial is original
work and as such has not been presented elsewhere. The
contents are outlined below and described in detail in Section
III. In brackets we also point out the presenter and duration
of the respective section.

o Trends and Advances in Modern Storage Hardware and Data
Management (I. Petrov, 15 min.)

o Building Large Flash-based DBMS Storage (I. Petrov, 10 min.)

o Flash-Aware Buffer Management (R. Gottstein, 1. Petrov, 10
min.)

o Transaction Management and Multi-Versioning (R. Gottstein,

10 min.)

Indexing in Multi-Version DBMS (R. Gottstein, 10 min.)

Append-Based Storage Management (R. Gottstein, 15 min.)

DBMS on Native Flash (S. Hardock, 1. Petrov, 15 min.)

Wrap-up (I. Petrov, 5 min.)

II. INTRODUCTION

Over the recent years novel storage technologies such as
Flash memories evolved and are now widely spread. The

architecture and algorithms of database systems and data-
intensive systems as a whole are built around the properties
of spinning disk storage technologies. Many basic design and
algorithmic assumptions have been made to efficiently use
the strengths of disk based storage and compensate for the
performance hazards. Some of those assumptions are 20-30
years old and reflect outdated hardware characteristics.

Over the last decade we witnessed several breakthroughs
in I/O technologies that have important implications to basic
assumptions in data management. Some of the key charac-
teristics such technologies bring along compared to tradi-
tional spinning disk storage are: (i) read/write asymmetry;
(i1) low latencies; (iii) high random performance; (iv) en-
durance/longevity; (v) addressability (byte, block); (vi) energy
consumption. Consider the trend towards growing database
page sizes, existing query execution algorithms, buffer man-
agement strategies, access paths, transaction processing tech-
niques, even the cost functions of a query optimizer — in
essence the whole DBMS architecture is designed to com-
pensate for the access gap between memory and disk.

Jim Gray and Prashant Shenoy gave us a powerful ’collec-
tion of rules’ to estimate the impact hardware development [1].
Over the next decade several important trends are expected
to continue. According to Bechtolsheim et al. [2] by 2022
computer systems will have: (i) 1000 cores per chip; (ii)) 64GB
DRAM chips yielding more than 128TB RAM per server;
(iii) high bandwidth (memory: 2.5TB/s, I/O: 250GB/s); (iv)
1TB Flash chips yielding more than 8TB per Flash drive. In
addition, Non-Volatile Memories such as the Memristor [3]
or Phase-Change Memories (PCM) are expected to appear.
As summarized by Chen et al. [4] PCMs are persistent byte
addressable (RAM-like) memories with asymmetric latency
and bandwidth, denser than NAND Flash and DRAM and
exhibiting endurance issues. Based on the above figures, more
than 512TB of NVM in the average computer system can be
expected by 2022.

III. TUTORIAL OUTLINE

In the present tutorial we examine the influence of the
new I/O technologies on data-intensive systems. We start with
a concise summary of the technological characteristics of
modern storage technologies. The main focus of this tutorial
is on their influence on different aspects of data management:

(1) Firstly, we describe the intricacies of building large Flash-
based storage space for database systems and how established
technologies such as RAID hit performance and scalability
limitations. (ii) Secondly, we take a closer look at how buffer
management in current multi-versioning DBMS (MV-DBMS)
is impacted by modern storage hardware, provide an overview
of state-of-the-art techniques and present the FBARC approach
to a write clustering buffer manager. (iii) Thirdly, we analyze
the transactional model in a MV-DBMS and show that such
models are optimized for legacy hardware. Furthermore, we
present an approach called Snapshot Isolation Append Storage
(SIAS) that introduces a novel invalidation model and version
organisation paradigm, complementing the properties of new
storage technologies. SIAS is a combination of multi-version
concurrency control with append storage in tuple granularity,
multi-version indexing, simplified buffer management and read
optimisations that leverage the properties of the aforemen-
tioned combination. (iv) Fourthly, based on the observation
that the Flash devices nowadays are used in a legacy mode,
backwards compatible with HDDs, in the final part of the tuto-
rial we concentrate on how DBMS can operate on native Flash
storage. We describe NoFTL, an approach that enables native
Flash access and integrates parts of the Flash-management
functionality into the DBMS yielding significant performance
increase and simplification of the I/O stack. (v) Last but not
least, having considered all these in isolation, we provide a
wrap up by offering an integrated view on the big picture and
focus on the necessary architectural changes.

A. Trends and Advances in Modern Storage Hardware

Modern storage technologies radically change the traditional
memory hierarchy (Fig. 1). Many established facts starting
from the cost ratios of typical I/O operations through the units
of 1/0O to the access gap change. The characteristics of the
new I/O technologies differ significantly from the properties of
hard disk drives and RAM: high performance (higher than disk
but not RAM); read/write asymmetry; endurance; addressing
mode; energy consumption; parallelism. Detailed information
for NVM is available in [5], [4], [6], for NAND Flash in [7],
(81, [9].

B. Building Large Flash-based DBMS Storage

Single server-class Flash SSDs nowadays still have rela-
tively small volumes. Building a large Flash-based storage
for DBMS, while preserving the high-performance is a non-
trivial task. With traditional hardware RAID technology the
controller cannot handle more than a few SSDs. It is a signif-
icant bottleneck and distorts the well known rules-of-thumb:
(i) the SSD read-write asymmetry and the write behavior are
amplified due to RAID; (ii) scalability issues in a RAID-based
storage system appear because of inadequate controllers; (iii)
fragmentation and distribution issues affect performance much
more than expected. Using host based storage and software
RAID address the problem and yield a scalable solution.

We will revisit some of the lessons learned so far in Section
III-G. Next, we focus on multi-versioning in Flash-aware

DBMS, version storage, organisation and indexing.
2ns

CPU Cache
(L1, L2, L3) 10ns

100ns

RAM
read
write 1us
Access 10us
Gap 25ps
read 80us
ol
©
o
3
3
@
Q
Q
<
write 500ps
800us
HDD
5ms
Read/Write Asymmetry, Wear Symmetric

Fig. 1. Memory hierarchy with new storage technologies

C. Transactional Model

Multi-version database systems can effectively address the
properties of new storage technologies. Although MV-DBMS
become a dominating trend, they still contain design assump-
tions based on the characteristics of legacy hardware: in single-
version DBMS a tuple is always updated in place, leading to
suboptimal I/O patterns for Flash memories such as random
writes and physical in-place updates. With multi-versioning
every tuple update creates a new version of that tuple which is
a separate physical entity that can be written to a new physical
location (out-of place), avoiding random writes. Moreover,
parallelism is leveraged, since with versions readers do not
block writes.

We provide an analysis of existing version organisation
and handling techniques in research prototypes and industry-
strength systems. The analysis indicates that one of the is-
sues with modern MV-DBMS is that they accomplish multi-
versioning by timestamping versions with a creation and an
invalidation timestamp to verify visibility to a transaction. A
transaction creating a new version, changes the invalidation
timestamp of the old version (predecessor) to invalidate it,
which results in random writes and in-place updates. We depict
the version invalidation scheme in Figure 2.

In addition, a novel invalidation model and version handling
paradigm are presented, both of which are at the core of a
newly proposed approach called Snapshot Isolation Append
Storage (SIAS). Under SIAS the very presence of a successor
version implicitly invalidates the predecessor. SIAS addresses
tuple versions that belong to the same data item as a unique
structure, whereas Snapshot Isolation (SI) addresses each
tuple version individually. Conversely, traditional SI treats the
visibility check for each tuple version individually as a local
decision, whereas SIAS treats all tuple versions that belong to
the same data item as a whole. Furthermore, SIAS unifies the
concepts of: multi-versioning and multi-version concurrency
control; append storage in tuple version granularity (Section
[II-F); multi-version indexing (Section III-D); simplified buffer
management (Section III-E); and entails further optimizations

History: W;[X¢=9];C+;
Transaction T4

W,[X1=10];Co;
Transaction T,

W3[X2=11];Cs;
Transaction T;

Relation R|...| A |... RelationR|...| A |...
——T1,W4: X=9 >Version Xo of X — —-____—_] -)
g } 1<
uplelX) 14057, W,: X=10 >Version X; of x—4 Q} = o
=]

LT3, Wa: X=11 SVersion X, of X — 171 X2 | [11

Transaction T3 creates version X,
as successor of version X,

Transaction T2 creates
version X; as succ. of Xp

Transaction T4
creates vers. Xo

[T10=XJ D] |[T1]9 =X DT,

I

[Tilo=

Traditional
Approach

m
[(Ti9=X[D]
Invalidation in SI and SIAS

X @ | [T, [10=X] T1]

SIAS

Fig. 2.

to data placement. The SIAS approach alleviates invalidation
related in-place updates by organising tuple versions as a
simple linked list. The latest version is always known and
is chained to its predecessor, demonstrated in [10] by using a
bitvector to identify entrypoints. Figure 2 depicts the paradigm
of the ‘chained’ tuple versions. Our recent SIAS approach
identifies tuple versions that belong to a data item by a virtual
ID (VID, Fig. 2) instead of a bitvector. A mapping table tracks
the entrypoint’s TID of this version chain, accessed by the
common VID.

D. Searching and Indexing

We present an overview of how multi-version indexing is
handled in existing research prototypes and industry-strength
systems. The analysis shows that traditional index structures
are unaware of the versioned data underneath and underlying
asymmetric storage. Making index structures aware of the
version organisation and invalidation model yields benefits and
avoids suboptimal access patterns. In Figure 3 the traditional
approach indexes two tuple versions of the same data item.
Since the index structure is version-oblivious it is unaware of
the fact that the two versions belong to the same data item
and treats them as separate items. Hence if an index lookup
request matches either one of them, both have to be fetched
and subsequently checked for visibility (Fig. 3).

In a further context, we present our multi-version indexing
scheme within SIAS (Fig. 3) that enables indexing of data
items rather than independent physical tuple versions. Under
SIAS a data item is addressed and fetched using a unique VID
that is equal among all tuple versions of that data item. The
most recent version (entrypoint) is always known (determined
using the mapping shown in Figure 3). The records in the
SIAS index store VIDs instead of the tuple IDs, as in the tra-
ditional approach. The Multi-Version Index (proposed in [11])
enables index only, in-memory version handling and visibility
decisions, all of which leading to a significant reduction of the
amount of I/O storage accesses and maintenance overhead. It
further achieves significantly lower response times and higher
transactional throughput on OLTP workloads.

Relation R|...|
=
@lookup(g,m,

Index built on
attribute A

= >

xapu|

@
c
Q
=
(9IPg,Xo) (10,|Ps5,X4 (9VID1) (10,|VID1) @
\ =
(o]
/ - [VIDO[VID1[VID2[VID3| [VID| |35
/ \ 1x0 |0x12[4x13[6x17] [TID | |8
\/ o)
5 [P1[P2P3lp4l PSP P7 P1 P2P3[P4 PEP7| | S
x1 10 o8
< @
Fetch(P0) _Fetcn(Ps) — — — Fotch(P5) g @

V|5|b|I|t heck

SIAS

V|5|b|I heck

Traditional Approach

Fig. 3. Indexing in the Traditional Approach and in SIAS

E. Buffer Management

This part of the tutorial is about the buffer management
in light of modern storage hardware and especially in MV-
DBMS. Most buffer management strategies aim at hitrate max-
imization, making it the primary criterion (based on recency,
frequency). New storage technologies have a significant impact
on the buffer manager: due to the read/write asymmetry the
cost of page eviction may be several times higher than the cost
of fetching a page. Hence write-awareness and spatial locality
become more important. We provide an overview of existing
Flash-friendly state-of-the-art buffer management approaches.
Furthermore, we show how hitrate, locality, frequency and
recency are influenced by the new storage technologies and
present our FBARC approach, which is an ARC based buffer
management strategy designed to address I/O asymmetry
on Flash devices. The SIAS approach is augmented with
a simplified buffer/storage management. New tuple versions
(inserts/updates) are appended to a new page at the logical
end of the append storage and only if the page is completely
filled or a threshold is reached (time/amount of work) it is
written to stable storage.

E Storage Management

We evaluate different approaches to append storage manage-
ment (Fig. 4). Append-/Log-based Storage Managers (LbSM)
for DBMS are a good match for the characteristics of new
storage technologies. They alleviate random writes and im-
mediate in-place updates, hence reducing the impact of Flash
read/write asymmetry. Nevertheless they introduce mapping
and granularity overhead, leading to write amplification.

We present the SIAS append storage manager that couples
multi-versioning, physical out-of-place updates and append-
based storage to address the read/write asymmetry of modern
hardware [12]. This significantly reduces the write-overhead
that is incurred by versioning (invalidation management),
since pages containing invalidated versions do not have to be
overwritten or remapped. Tuple versions are appended to pages
and a page is written when it is completely filled, leading
to a sequentialization of writes (Fig. 4: C1,C2). We discuss

— time——p»
%’ TupIesT ={X,A,B,Z,K}
s E ,{!’{! Page M contains tuple M
S Q
o O
> Z ‘ K ‘ %Storage Buﬁered
> Q —_— tlme—> E_ tlme—}

Qv Al e ll=1li e ke} r
ged(allBllzlix & X [al[B]z]lk
g_ S g_ % |Threshold
Py 8g [A[x[B]z]

2 [}

time——»
o
23 zg
gg 3¢ a8 xz|l (K]
o 4 Q — ' Threshold
Oc Q<
) @

Fig. 4. Append Storage Management

optimizations to append storage such as writing in sorted runs
that optimize for successive read access (Fig. 4: B1,B2,C1,C2).

G. Revisiting backwards-compatible DBMS Flash Storage

Some of the lessons learnt in terms of the disadvantages
of using modern Flash SSDs as DBMS storage are already
introduced in Sections III-A and III-B. These include: (i)
limited SSD’s on-device computational and memory resources;
(i) single FTL scheme for all types of workloads; (iii) closed
black-box architecture, where neither the DBMS information
about data and I/O; nor (iv) the knowledge about the physical
Flash layout can be utilized; (v) unpredictable performance
fluctuations; (vi) legacy interfaces and protocols; (vii) func-
tional redundancy along the I/O path; (viii) 3-5x higher costs
of Flash storage.

In this context we revisit many of the assumptions stated
so far and describe the NoFTL architecture [13], under which
the DBMS has a complete control over the underlying Flash
memory by utilizing a native Flash interface. It represents a
logical continuation of the DBMS tradition (Fig. 5) to simplify
the I/O path and directly control physical data placement
(DBMS on RAW devices). Flash maintenance tasks, previ-
ously performed by the on-device FTL, are now integrated
into different subsystems in the DBMS (storage, transaction
or buffer managers). The unboxing of Flash and its native
DBMS integration creates a win-win situation for the Flash
management and the DBMS.

IV. BIOGRAPHIES OF THE PRESENTERS

Ilia Petrov is a Professor at Reutlingen University, Germany
since 2012. Prior to that he was a Post-Doctoral fellow
with the Databases and Distributed Systems Group at the
Technische Universitit Darmstadt. His research focus is on
data management on modern hardware. He worked on data
management and Business Intelligence at SAP. He holds a
Ph.D. from the University of Erlangen-Niirnberg.

Robert Gottstein is a fourth year Ph.D. student and sci-
entific researcher at the Technische Universitidt Darmstadt. He
is working under Prof. Alejandro Buchmann at the computer
science department of Databases and Distributed Systems. His

Storage Mgr.

lash Access

Storage Mgr.
Raw

- Legacy Block
File System interface

QREAD(LBN)
) QWRITE(LBN) .

Block Device
Support (Kernel)

Native Flash
interface
QREAD(PPN)

QWRITE(PPN)
QERASE(PBN)|
..

Block Device
Support (Kernel)

a ! =) ! n }
177 | 177 | 7] |
2 ! 2 ! 2 !
IS ! i ! % [Flash Mem. U !
| © | © | ©

I ! I ! I !
el | el | e |
(a) ,cooked’ Storage (b) RAW Storage (c) NoFTL Storage

Fig. 5. DBMS storage alternatives: (a) Traditional cooked DBMS storage;
(b) DBMS on RAW volumes/devices; (c) NoFTL

research focusses on DBMS on new storage technologies and
he is actively involved in the FlashyDB DFG research project.

Sergej Hardock is a Ph.D. student at the Databases and
Distributed Systems Group at the Technische Universitit
Darmstadt. His research interests are in database systems on
modern hardware, native Flash database storage, lean Flash-
aware database systems. He earned his master’s degree from
TU-Darmstadt in 2013.

ACKNOWLEDGMENT

This work was supported by the DFG project "Flashy-DB” and
the Graduate School "Topology of Technology”.

REFERENCES

[1] J. Gray and P. Shenoy, “Rules of thumb in data engineering,” in Proc.
ICDE’00. Washington, DC: IEEE, 2000, pp. 3-10.

[2] A. von Bechtolsheim, “Technologies for data- intensive computing,” in
Keynote Presentation. HTPS 09, Asilomar, CA, Oct. 2009.

[3] N. D. Mathur, “The fourth circuit element,” Nature, vol.
455, no. 7217, pp. EI3-El13, 10 2008. [Online]. Available:
http://dx.doi.org/10.1038/nature07437

[4] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in CDIR’11, Asilomar, CA, Jan. 2011.

[5] G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status
and outlook of emerging nonvolatile memory technologies,” Electron
Devices Meeting. IEDM Technical Digest. IEEE, pp. 567 — 570, 2004.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Phase change memory
architecture and the quest for scalability,” Commun. ACM, vol. 53, pp.
99-106, July 2010.

[7]1 F. Chen, D. A. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in SIGMETRICS ’09, 2009, pp. 181-192.

[8] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and
R. Panigrahy, “Design tradeoffs for SSD performance,” in USENIX'08,
2008, pp. 57-70.

[9] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J. Song,

“A survey of flash translation layer,” J. Syst. Archit., vol. 55, pp. 332—

343, May 2009.

R. Gottstein, T. Peter, I. Petrov, and A. P. Buchmann, “SIAS-V in Action:

Snapshot Isolation Append Storage - Vectors on Flash,” in EDBT’14.

R. Gottstein, R. Goyal, S. Hardock, I. Petrov, and A. Buchmann, “MV-

IDX: Indexing in Multi-Version Databases,” in IDEAS’ 14, pp. 142-148.

R. Gottstein, I. Petrov, and A. Buchmann, “Append storage in multi-

version databases on Flash,” in BNCOD. Springer Berlin Heidelberg,

2013, pp. 62-76.

S. Hardock, I. Petrov, R. Gottstein, and A. Buchmann, “Noftl: Database

systems on ftl-less flash storage,” Proc. VLDB Endow., vol. 6, no. 12,

2013.

[10]
(1]

[12]

[13]

