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Abstract—In the present tutorial we perform a cross-cut
analysis of database storage management from the perspective
of modern storage technologies. We argue that neither the
design of modern DBMS, nor the architecture of modern storage
technologies are aligned with each other. Moreover, the majority
of the systems rely on a complex multi-layer and compatibility-
oriented storage stack. The result is needlessly suboptimal DBMS
performance, inefficient utilization, or significant write amplifi-
cation due to outdated abstractions and interfaces. In the present
tutorial we focus on the concept of native storage, which is storage
operated without intermediate abstraction layers over an open
native storage interface and is directly controlled by the DBMS.
We cover the following aspects of native storage: (i) architectural
approaches and techniques; (ii) interfaces; (iii) storage abstrac-
tions; (iv) DBMS/system integration; (v) in-storage processing.

I. STRUCTURE AND ORGANIZATION OF THE TUTORIAL

We propose a 1.5 hour tutorial on the above topic. The scope
can be optionally extended to 3 hours to cover In-Storage
Processing. The target audience is database researchers and
practitioners with interests in storage management on modern
storage hardware. The proposed tutorial is original work and
as such has not been presented elsewhere. The contents and the
expected duration are outlined below and described in detail
in Section II.
• Brief overview of modern storage technologies and the

classical I/O stack (10 min.)
• Native Storage (5 min.)
• Architectural Approaches to Native Storage (15 min.)
• Native Storage Interfaces (20 min.)
• Storage Abstractions for Native Storage (15 min.)
• System Integration (20 min.)
• In-Storage Processing (90 min. – in case of a 3h tutorial)
• Wrap-up (5 min.)

II. TUTORIAL OUTLINE

In the present tutorial we examine the influence of native
storage on data-intensive systems and data management. We
begin with a succinct description of the concept of native
storage and a brief summary of the characteristics of modern
storage technologies. The main focus of this tutorial is on their
influence on different aspects of data management. Firstly,
we describe different architectural approaches and techniques
for defining and using native storage. Existing native storage
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systems pursue different goals and result in various architec-
tural blueprints. These range from small sensor data or graph
processing to enterprise scenarios and in-storage processing.
Secondly, we present a cross-cut analysis of different proposals
for native storage interfaces. These are very different from
the currently dominating compatibility block-device interface.
Thirdly, novel storage abstractions are needed with open native
storage interfaces in place. Fourthly, we analyze the different
approaches for system integration of native storage and native
storage interfaces. Last but not least, having considered all
these aspects in isolation we provide a wrap-up in terms of
data management techniques for native storage.

III. INTRODUCTION

Over the last decade we witnessed several important break-
throughs in storage technologies: Flash and Flash SSDs have
become omnipresent as database storage; Non-Volatile Mem-
ories (e.g., PCM or Intel/Micron’s 3D XPoint) are gradually
becoming real. Although these have very different character-
istics from old-fashioned magnetic HDD storage, they are still
treated as fast replacements and are embedded in a classical
“cooked” storage stack. This typically comprises multiple
layers: a low-level compatibility translation layer (typically
running on-device), a block-device, OS kernel support, and a
file system [1], [2]. In fact, file-systems are considered part



of the NVM I/O stack even for non-volatile main-memory
settings [3], [4]. Even though a compatibility stack fosters
proliferation of modern storage technologies and simplifies
systems development, it has a number of disadvantages [5]–
[8]: (i) performance lags and underutilization of SSD resources
( [2], [8]–[10] report lags of several times); (ii) no cross-
layer optimizations due to layered abstractions and information
hiding as well as the rigidness of compatibility interfaces;
(iii) I/O (write-/read-) amplification of several times in terms
of size and count, leading to lower performance and faster
wear [8], [11]; (iv) functional redundancy along the I/O stack
[2], [11]; (v) inability to configure the semiconductor storage
adaptively (depending on the application or the workload) [1],
[12], [13]. In fact, with all of the above in place, [1] reports
that only 40% of the raw Flash bandwidth is delivered to
applications and that to achieve high performance only, 50%-
70% of the raw capacity is effectively available to applications
(the rest is reserved for write handling and error correction).

A. Architectural Approaches and Techniques

In pursuit of a better I/O stack design, the use of alternative
architectural blueprints seem unavoidable [5]–[7]. Opening
up storage confronts systems and applications with different
physical/low-level abstractions, evolving interfaces, and the
question of how to distribute physical storage management
along the stack. Physical storage management – PSM (e.g.
FTL for Flash SSDs) encompasses: (i) the logical-to-physical
address mapping (L2PAM); (ii) wear-levelling; (iii) error cor-
rection (ECC) and bad-block management; (iv) physical meta-
data management, (v) physical garbage collection and storage
optimizations; and (vi) write management. In a traditional I/O
stack, PSM is typically performed on-device, hidden behind
the compatibility block-device interface.

Various native storage architectures exist. LightNVM and
open-channel SSDs envisage a host-based, shared L2PAM
table and handle physical metadata management, GC and
write optimizations, as well as wear-levelling, on the host
as part of the LightNVM subsystem. BlueDBM [14] and
NoFTL [2] likewise assume a native storage, which however
is extensible. NoFTL [2] and NoFTL-KV [15] have proposed
open native storage and follow the approach of deep database
integration, which explores coherent integration of PSM in
different modules of the DBMS and investigates algorithmic
improvements and cross-layer optimizations. Architecturally,
native storage can be realized as host-based storage [2], [15]
or distributed storage [14], [16], [17].

Early proposals for an I/O stack redesign gravitate around
the concept of bimodal [6] or multi-modal storage. Under
bimodal storage [6] if the DBMS issues “constrained” I/O
patterns, i.e. no in-place updates and no random writes, the
SSD uses a minimal FTL, while for all “unconstrained” I/O
patterns, the SSD switches to traditional full-scale FTL [18].
Application Managed Flash (AMF) [19] explores append-
based storage management over an extended block-device
interface under a novel append-based file system. AMF ex-
plores the architectural coupling of free space management

to physical GC, in the same time leaving ECC, bad-block
management, and wear leveling on device. [9], [11], [20]
assume partial exposure of the mapping (which still resides
on device) to applications. Their design goals are to handle
storage virtualization [9], storage management for append-
mostly systems [11], or to explore transactional atomicity
[20]. Some complementary aspects of native storage architec-
tures are reconfigurability and intelligent storage/In-Storage
Processing (ISP) [21]–[28]. In-situ execution of data pro-
cessing operations minimizes data movement, leverages inter-
nal storage characteristics (parallelism, bandwidth, on-device
CPU/FPGA), to achieve performance improvement of several
times as well as better resource and energy efficiency.

B. Interfaces

Current hardware and software interfaces to memory and
storage are rudimentary. Such interfaces: (i) have limited
support for parallelism and concurrency, hence they limit
system bandwidth and throughput; (ii) are relatively rigid with
limited extensibility mechanisms; (iii) have only a limited set
of capabilities and expose outdated abstractions. Building on
top of such outdated abstractions demands layers of backwards
compatibility, which prevent algorithms and system architec-
tures from efficiently using modern storage technologies as
their true characteristics are masked. On the hardware level, for
instance, the traditional RAS/CAS DRAM architecture offers
limited parallelism, while increasing the number of DIMMs
per channel typically decreases performance. Similar behavior
is exhibited by SATA. Block Device Interfaces (BDI) and
block I/O are ubiquitous, yet they are a major bottleneck [5],
[7] as they do not match the properties of modern storage
technologies and require: immutable logical addresses; fixed
I/O granularity; a rigid set of operations, mainly read/write;
symmetric and wear-proof storage.

The basic native storage interface typically comprises
READ PAGE, WRITE PAGE and ERASE BLOCK commands
[2], [14], [29]. These are defined on physical addresses. Since
overwriting is an issue on modern storage technologies (wear,
erase-before-overwrite), physical addresses need to change.
This is a stark contrast to the BDI commands that rely on
immutable logical addresses (LBA), and raises the issue of
logical-to-physical address mapping (L2PAM). Various exten-
sions to the basic interface are proposed by different systems.
LightNVM [29], for example, suggests that the above are
vectored commands, i.e. they take sets or ranges of physical
addresses as arguments, instead of a single address. NoFTL
[2] suggests extensions such as write delta for writes of sub-
page granularity, copyback to reduce data transfers incurred by
the garbage collector, or get addr table to speed-up L2PAM
table recovery.

I/O atomicity is an open issue in the traditional I/O stack,
but it becomes viable with native storage and modern storage
technologies. The key is the ability to control the L2PAM table
and GC so that old physical pages and their address mapping
entries are retained, while new contents are being written on
a different physical location. Only if the write sequence, are



succeeds the old address mappings completely and atomically
replaced with the new ones. I/O atomicity has inspired various
architectural designs regarding copy-on-write (CoW) storage
management and logging. [7] introduced a new I/O primitive
“atomic-write”, however without support for concurrency. [20]
suggests transaction-awareness, allowing the DBMS to notify
the SSD about the beginning and end of transactions. The
SHARE [11] interface to Flash targets atomicity and CoW and
proposes the share(LogicalAddr1, LogicalAddr2) command
to allow two logical page numbers to be mapped on the same
same physical page. SHARE is defined to be variant of TRIM
that has also been explored in ANViL [9] predecessors called
ptrim().

Another aspect is the management of the logical-to-physical
address mapping. With native storage it can be: (a) host- or
device resident, depending on the available resources; (b) com-
pletely exposed (and managed by the application), or partially
exposed (through special commands) but managed by PSM.
[2], [14], [29] assume full exposure and host-based L2PAM
table management. [2] investigates full DBMS integration. [9],
[11], [20] assume partial exposure of the mapping (which still
resides on device) to applications. This yields new commands
and abstractions. ANViL [9] considers exposing the logical-to-
physical address mapping table to applications and proposes
commands such as clone(), move() or delete().

In-Storage Processing (ISP), targets the execution of appli-
cation/system specific functionality in-situ, and is an additional
factor for interface extensions. [21] defines a new session-
based DBMS-SmartSSD communication protocol, comprising
operations like OPEN, CLOSE, GET, and a set of APIs for on-
device functionality, such as Command API, Thread API, Data
API and Memory API. Willow [16] proposes similar concepts
for a user-programmable SSD. IBEX [27], [28] investigates a
DB-record based interface.

C. Abstractions

As an open native storage interface replaces traditional BDI,
the different physical organization of native storage is exposed
to the DBMS. Typically, native storage comprises chips,
channels, the on-device controller, and its resources. Adapting
storage management and data processing for this type of
organization is non-trivial. Therefore there is a pressing need
for new storage abstractions that ease the DBMS integration
of native storage.

AMF [19] assumes flash blocks and contiguous segments.
Segments are introduced as a unit of allocation and physical
distribution to achieve better bandwidth. More importantly
AMF segments need to be explicitly deallocated by TRIM
to physically reclaim the occupied space. A segment is
subdivided into sectors that are a unit of I/O. As AMF
targets append-based storage, a sector can never be overwritten
(unless the whole segment is deallocated).

NoFTL introduces the concepts of regions and groups to
manage native storage [30]. A NoFTL region comprises a
set of physical chips and data channels as well as physical
storage management strategies, such as address management,

garbage collection and data placement. Regions are coupled to
standard DBMS logical storage structures such as segments or
tablespaces. A storage device is thus viewed and maintained
by the DBMS as a set of regions. Every database object
is then assigned to a certain region based on its properties,
while every region can hold multiple objects (i.e. one-to-many
relationship). Groups [30] serve as means to improve hot/cold
data separation and thus decrease unnecessary GC activity,
reduce erases and improve performance and longevity.

ANViL [9] proposes the snapshot at the level of a volume
or a file as a native storage abstraction. A snapshot allows
to checkpoint the state of a file/volume with little space and
performance overhead, as only mapping entries are cloned.
ANViL [9] also introduces deduplication as an abstraction
based on range cloning that identifies and collapses identical
blocks.

D. System Integration

There are different approaches to integrate native storage
and physical storage management (PSM) into the DBMS
or other applications. We distinguish partial integration and
deep integration. Many approaches offer non-intrusive partial
integration of native storage and rely on multi-modal native
storage interfaces. Such systems tend to preserve existing
I/O interface, however they also incorporate new features as
extensions. Systems such as AMF [19], SHARE [11], XFTL
[20] represent partial integration. Some of the advantages are
the high degree of reuse, proliferation, and low implementation
footprint. Furthermore, some of the native storage systems
such as BlueDBM [14] or ANViL [9] offer multi-modal
interfaces, leaving it to application to decide which one to
use.

Systems such as [2], [31] support deep integration, i.e. the
PSM is coherently integrated into different modules of the
system. The key insight is that deep integration results in a
surprisingly simple and lightweight implementation. This is
the case, since many DBMS sub-systems already implement
similar functionality, which only needs to be leveraged and
extended for deep integration.

E. Reconfigurability

Storage built on top of semiconductor storage technologies
can be dynamically reconfigured depending on the workload.
This type of reconfigurability has been initially explored in
[12], [13] in compatibility storage settings. [1], [16] investigate
reconfigurability based on native storage. NoFTL [32] offers
an advisor to derive region properties from I/O access patterns
to different DB-objects.

F. In-Storage Processing (in case of a 3 hour tutorial)

The ability to execute application/system specific function-
ality in-situ (In-Storage Processing – ISP) is a very relevant
trend and a revival of past ActiveDisc/DatabaseMachines
efforts. [21] is one of the first works to explore offloading parts
of data processing on Smart SSDs, indicating the potential
of significant performance improvements of up to 2.7x and



energy savings of up to 3x. [21] defines a new session-
based DBMS-SmartSSD communication protocol, comprising
operations like OPEN, CLOSE, GET, and a set of APIs for
on-device functionality, such as Command API, Thread API,
Data API and Memory API. Willow [16] proposes similar
concepts for a user-programmable SSD. [21] identifies two
research questions: (i) how can ISP handle the problem of
on-device processing in the presence of a more recent version
of the data in the buffer; and (ii) what is the efficiency of
operation pushdown in the presence of large main memories.

The initial ideas of [21] have recently been extended
in a complementary approach called In-Storage Process-
ing/Computing [22]–[24]. [22] demonstrates a performance
improvement of 5x and 47x for scans and joins on embedded
CPUs. Further approaches stress the importance of in-situ ana-
lytical processing on on-device stream processors or embedded
CPUs [25], [26]. Still, all of the above target read-only ISP,
assuming that the on-device data is immutable.

IBEX investigates how data processing on FPGAs can be
used as explicit co-processors, or implicitly as part of an
intelligent storage system [28]. IBEX exploits reconfigurable
computing and the capabilities of custom-hardware to ac-
celerate certain database operations. Yet, operations are not
performed in-situ as data and results need to be transferred
form storage to the FPGA and vice versa.

G. Data Management on Native Storage

In this part of the tutorial we provide a brief overview on
recent solutions in the industry and academia for architecting,
organizing, and utilizing native storage. The two major direc-
tions here are (i) the utilization of storage-specific out-of-place
update strategy, as well as (ii) usage of database semantics
for optimizations in FTL (e.g., reconfigurable/reprogrammable
SSDs).
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