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A B S T R A C T

Modern persistent Key/Value-Stores operate on updatable datasets — massively exceeding the size of available
main memory. Tree-based key/value storage management structures became particularly popular in storage
engines. B+-Trees allow constant search performance, however write-heavy workloads yield inefficient write
patterns to secondary storage devices and poor performance characteristics. LSM-Trees overcome this issue by
horizontal partitioning fractions of data — small enough to fully reside in main memory, but require frequent
maintenance to sustain search performance.

To this end, firstly, we propose Multi-Version Partitioned BTrees (MV-PBT) as sole storage and index
management structure in key-sorted storage engines like Key/Value-Stores. Secondly, we compare MV-PBT
against LSM-Trees. The logical horizontal partitioning in MV-PBT allows leveraging recent advances in modern
B+-Tree techniques in a small transparent and memory resident portion of the structure. Structural properties
sustain steady read performance, even on historical data, and yield efficient write patterns as well as reduced
write-amplification.

We integrate MV-PBT in the WiredTiger key/value storage engine. MV-PBT offers an up to 2x increased
steady throughput in comparison to LSM-Trees and several orders of magnitude in comparison to B+-Trees in a
YCSB workload. Moreover, MV-PBT exhibits robust time-travel query performance and outperforms LSM-Trees
by 20% and B+-Trees by an order of magnitude.
1. Introduction

High performance persistent key-sorted No-SQL storage engines
became the workhorse systems for online data-intensive applications.
Such engines exist as standalone K/V-Stores (Key/Value Stores) [1,2] as
well as in DBMS integrated as storage engines [3–5]. Obviously, back-
ing tree-based K/V storage management structures – i.e. B+-Trees [6],
LSM [7,8] and derivatives [3,9] – natively enable necessary advanced
lookup operations beside equality search, e.g. key prefix or inclusive
and exclusive range searches, with (nearly) constant logarithmically
scaling performance characteristics. Continuous modifications require
special care to preserve constant performance characteristics and men-
tioned search features. Although B+-Trees offer constant search per-
formance to data in main memory and on secondary storage devices,
modifications yield inelastic performance characteristics. LSM-Trees
sacrifice properties of a single tree structure to overcome this issue by
buffering modifications in a fraction of main memory, typically tree-
based components, and leveraging flash-based secondary storage device
characteristics on eviction and necessary background merge operations.

Flash technology in SSD secondary storage devices offers specific indi-
vidual characteristics. I/O operations are executed against multiple
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independent storage units of the Flash-SSD such as (chips, dies, planes)
that are connected over independent channels SSD controllers, thus
resulting in a high internal parallelism and I/O-performance [10–12].
However, reads perform an order of magnitude better than writes,
yielding an asymmetric read/write I/O behavior. While read perfor-
mance is nearly identical for random and sequential access patterns,
write I/O is preferably sequentially performed [13]. Furthermore, pages
are only overwritten out-of-place (so called erase-before-overwrite),
mandating possibly preemptive background garbage collection [14,15]
to mitigate the impact of very slow flash erases.

Focus on Storage Amplification Factors. Generally, tree-based storage
management structures manage records, e.g. a set of key–value pairs
with a size of several hundred bytes (B) respectively, in a structure of
nodes, which possibly have a fixed size that is a multiple of a secondary
storage device’s block-size, ranging from few kilo bytes (kB) up to mega
bytes (MB). Consequently, there is a discrepancy in size and costs of
logically required and physically transferred data for different database
operations and storage structures. For instance, if an 100B key–value
pair is to be read, its logical size is 100B. However, searching its
respective record in the structure of nodes typically yields a sequence
vailable online 15 May 2024
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of physical block reads from secondary storage devices. Hence, sev-
eral kB or MB are physically read in order to logically get the 100B
ey–value pair. On the other hand, a logical insertion of an 100B key–

value pair yields a subsequent physical write of a set of nodes. Thus,
physical read/write I/O respectively causes read-amplification (RA) or
write-amplification (WA) for operations (e.g. get or put) on logical
key–value pairs. Moreover, space-amplification (SA) describes the ratio
f physically and logically required space per modifying information.
maller ratios indicate less resource consumption and facilitate better
torage characteristics.

ulti-Version Storage enables Time-Travel Capabilities. The ability to
uery the dataset for a particular point in history is very useful in
nterprise applications [16]. Several storage engines already maintain
ultiple versions of a logical tuple for certain points in time in order

o perform multi-version concurrency control (MVCC) and snapshot
solation (SI). Nevertheless, obsolete version records get removed by
ackground garbage collection. Major difference in time-travel query
rocessing is that version records principally never become obsolete.
specially in mixed workloads, robust transaction processing and query
erformance is challenging with increasing version chain lengths.

ontributions. The main contribution of this paper targets the use of
ulti-Version Partitioned BTrees (MV-PBT) as the sole storage structure

ey–value storage engines. Detailed contributions are as follows [17]:

• Reducing write-amplification in append-based storage manage-
ment with MV-PBT by sequential write of saturated partition
managed nodes.

• Transparent internal partition management and atomic partition
switch operations without schema maintenance requirements.

• Single root node as entry point in the B+-Tree structure allows to
leverage logarithmic capacity and buffering/caching behavior for
commonly traversed inner nodes.

• Reduction of merge-triggered write-amplification and accompa-
nying pressure on secondary storage devices by Cached Partitions.

• Leveraging scalable in-memory optimizations and compression
techniques of B+-Tree structures for massive amounts of data in
a very hot fraction.

• Prototypical implementation and experimental evaluation in
WiredTiger [2], which provides competitive B+-Tree and LSM-
Tree implementations.

he present paper introduces the following novel aspects:

• Implications on secondary indexing MV-PBT storage engines.
• Robust latencies in time-travel query processing with experimen-

tal evaluation in WiredTiger.

utline. First, we give an overview of common tree-based storage
tructures as well as recently introduced aspects of Multi-Version Parti-
ioned BTrees (MV-PBT) [17,18]. We present an architectural overview
f MV-PBT in Section 3. Sections 4 and 5 focus on reduction of write-
mplification by data skipping and fast retrieval in a horizontally
artitioned structure and considering defragmentation only as a result
f garbage collection. gives an exemplary illustration of implications
n secondary indexing MV-PBT. Section 7 focus on time-travel query
rocessing capabilities of MV-PBT. We evaluated the storage manage-
ent structures in the homogeneous storage engine WiredTiger 10.0.1

n Section 8 and conclude in Section 9.

. Related Work

Most popular key-sorted storage and index management structures,
ncluding LSM-Trees [7,8], derivatives [3,9] as well as the proposed
pproach Multi-Version Partitioned BTrees (MV-PBT) [17,18], are based
n B+-Trees [6]. Hence, we now provide a brief overview:
2

)

+-Trees and derivatives achieve a constant logarithmically scalable
earch performance, since root-to-leaf traversal operations depend on
heir height — even in case of massive amounts of stored data records.
ommonly used inner nodes of traversal paths allow fast access to data

n leaf nodes with few successive read I/O. However, B+-Trees are
otentially vulnerable in case of heavy modifications. Whilst insertions,
pdates and deletions of records possibly facilitate steady throughput
n main memory by optimized and highly scalable maintenance pro-
edures [2,3], massive amounts of maintainable key-sorted data yield
andom write I/O and high write-amplification on secondary storage
evices once modifications get persisted on eviction of volatile and
odified (‘dirty ’) buffers. In order to preserve strict lexicographical sort

rder of records, maintenance operations cause cascading node splits,
hereby blank space is created to accommodate additional separator
eys in inner nodes and records in leaves in the designated arrange-
ent. As a result, sub-optimally filled nodes reduce cache efficiency and

ontained information is written multiple times, yielding a high write
nd space-amplification. Furthermore, read I/O on secondary storage
evices of partially filled nodes lead to high read-amplification. There-
ore, for massive amounts of data, B+-Trees become write-intensive,
ven in case of proportionately few modifications.

Thus the following problems emerge:

• low benefit from main memory optimizations, since nodes are
frequently evicted.

• low cache efficiency and high read-amplification due to partially
filled nodes.

• massive space and write-amplification on secondary storage de-
vices.

lternatively, LSM-Trees are optimized for high insert/update rates and
ield a sequential write pattern, since modifications are buffered in
ree-based LSM components in main memory. Components get fre-
uently switched, merged and evicted to persistent secondary stor-
ge devices. Generally, background merge operations (so called com-
actions) counteract the data fragmentation and increased read and
earch effort, however this behavior also increases its write-
mplification. Several approaches in merge policies [19–21] and re-
uction of read-amplification [22–25] have been introduced. Certainly,
lash allows high internal parallelism and multiple reads of parallel
raversal operations. Nevertheless, since components are separate struc-
ures, they effectively leverage neither caching effects on traversal nor
ogarithmic capacity capabilities per height of B+-Trees. Moreover,
reation of new components on switch procedure is not transparent to
he storage engine and relies on high-level maintenance of the database
chema. Finally, due to append-based record replacement technique in
SM, key uniqueness is assumed, wherefore the application in storage
ngines of DBMS with non-unique indexes is complicated.

The challenges in LSM are defined as follows:

• inefficient caching behavior of decoupled components require
frequent merges and yield considerable write-amplification.

• hence, high internal parallelism of flash is not leveraged for read
operations.

• components are non-transparent for further layers of a storage
engine.

• non-unique indexing requires additional care.

ulti-Version Partitioned BTree (MV-PBT) serves as sole storage and
ndex management structure in KV-storage engines. MV-PBT is based
n Partitioned BTrees (PBT) [26], an enhancement of a traditional B+-
ree. Recent publications introduced (MV-) PBT as a highly scalable

ndexing structure in DBMS with multi-version concurrency control
MVCC) and massive index update pressure [18,27,28], combining and
xtending the beneficial properties of B+-Trees and LSM-Trees. (MV-

PBT relies on manipulation of an artificial leading key column of
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Fig. 1. Schematic representation of MV-PBT’s logical organization. Logical horizontal
partitioning and buffer replacement policy yield a hot/cold separation within one single
tree structure and ultimately enables a sequential write pattern of whole partitions.

every record — the partition number; and exploiting the regular lexico-
graphical structure of B+-Trees for partition management due to several
purposes. Similar to component management in LSM-Trees, partitions
are adopted for write-optimization (compare [17,27,28]), however,
within one single tree-structure with commonly used nodes. Therefore,
modifications are collected in a dedicated partition, e.g. with the most
recent partition number, located in the MV-PBT-Buffer in main memory,
and evicted in a sequential write. Moreover, partition management ad-
ditionally enables maintenance of several version records and inherent
index-only visibility checks [18], e.g. in the context of MVCC and SI,
and serve as storage management structure [17]. This paper extends
the focus on MV-PBT as sole storage management structure [17] by
the contexts of additional access paths, i.e. MV-PBT as sole storage and
index management structure, and time-travel capabilities in KV-storage
engines.

3. Architecture of Multi-Version Partitioned BTrees

Multi-Version Partitioned BTree (MV-PBT) as an append-based and
version-aware storage and indexing structure relies on well-studied
algorithms and structures of traditional B+-Trees, with which they
share many characteristics and areas of application. Therefore, MV-PBT
is able to adopt and even leverage modern B+-Tree techniques.

Structural Overview. The proposed approach facilitates straightforward
horizontal partition management within one single B+-Tree structure
in order to keep a very hot mutable fraction of leaves in fast main
memory (Fig. 1 (D)), i.e. the MV-PBT-Buffer includes the most recent
partition leaves and is kept apart from the regular buffer replacement
policy (compare Fig. 1 nodes in (A,B,C)). Reaching a certain dirty mem-
ory footprint (MV-PBT-Buffer threshold) initiates an atomic partition
switch operation, which asynchronously finalizes in a sequential write
of dense-packed cleaned data in leaves and referring inner nodes, in
order to interference-freely absorb ongoing modifications. The entire
process is explained in a separate paragraph later in this section.
Since partitions are principally defined by the existence of associated
records, they appear and vanish as simply as inserting or deleting
records [26], however, auxiliary meta data structures allow a massive
speed-up of operations. Append-based structures allow modifications of
already persisted data by out-of-place replacement. MV-PBT enhances

Fig. 2. Auxiliary recoverable MV-PBT data structures.
3

this behavior by additional record types, which allow internal indexing
and non-uniqueness of data and enables native B+-Tree-like indexing
features. Moreover, maintenance of multiple version records of the
same data items mandate the adoption of multi-version capabilities in
terms of transaction timestamps and multi-version (MVCC) visibility
checking. Low write-amplification, sequential writes of dense-packed nodes,
commonly utilized inner nodes with one single root as entry point, paral-
lelized multi-partition search operations as well as multi-version indexing
capabilities make MV-PBT superior as sole storage and index management
structure in storage engines.

MV-PBTs Auxiliary Data Structures information is entirely contained in
the B+-Tree structure. For instance, the mutable most recent partition
number (compare Fig. 1 (D) mutable Partition and Fig. 2 max_pnr) could
e identified by searching the rightmost record in the tree structure.
ince cached information is frequently required and its memory foot-
rint is very low, auxiliary data structures are cached in RAM (an
xcerpt is depicted in Fig. 2). MV-PBT data structures require neither
ocking for any atomic operation, nor additional logging of modifica-
ions, since the lightweight information is completely recoverable from
asic B+-Tree by a scan operation. All information of horizontal parti-
ioning is anchored within the tree structure, i.e. horizontal partitioning
s transparent to further storage engine modules.

Multiple MV-PBT may exist within a storage engine, which com-
only share the MV-PBT-Buffer threshold for leaves of respective muta-
le most recent partitions (Fig. 2 Global Meta Data — buffer_share).
he MV-PBT Meta Data belongs to a specific relation in the schema,

ndicated by relation_id in Fig. 2. Its most recent partition number
max_pnr) is frequently required to determine record prefixes as
ell as for atomic switching operation (is_switching). An MV-PBT

omprises of several valid partitions, which contain a set of meta data
ike its respective partition number (pnr), an indicator for its persistent
torage (synced), the number of comprised records (n_records),
he size of associated leaves in the MV-PBT-Buffer (dirty_leaf) or
pecific partition type characteristics (type). Finally, auxiliary filter
tructures for point and/or range queries are referenced; e.g. fence keys,
prefix) bloom filters or hybrid point and range filters [22–24].

artition Number Prefixes are prepended to each record key with the
entral scope of leveraging lexicographical sort capabilities of B+-
rees in order to achieve a logical horizontal partitioning (compare
ig. 3.a arrangement of record Maya in B+-Tree and MV-PBT). Partition
umbers could be of any comparable data type, e.g. 2 or 4-byte integers,
nd might are maintained in an artificial leading key column [26].

Fig. 3. Horizontal partition maintenance with Partitioned Keys.
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Fig. 4. Example of append-based out-of-place record maintenance in MV-PBT.
However, combining the partition number and the first record key
attribute in a partitioned key type (compare Attribute 1 in Fig. 3.a)
enables cache efficient comparison of co-aligned attributes as evaluated
in Fig. 3.b — artificial leading key columns cause increased costs of
one additional comparison. Additional storage costs are negligible due
to prefix truncation techniques. Partitioned keys are simply allocated
when setting search keys and their prefix becomes hidden by returning
an offset in the leading key attribute in order to retain transparent
horizontal partitioning.

Multi-Version Capabilities match the out-of-place replacement in MV-
PBT. Multi-Version Concurrency Control (MVCC) with Snapshot Isola-
tion (SI) is a common technique to enable high transactional parallelism
in storage engines, since readers and writers are not mutually blocking
as each transaction operates on a separate snapshot of data. Therefore,
multiple version records of one logical tuple are maintained in a version
chain — each is valid for a different period in time.

According to the example in Fig. 4, MV-PBT adopts a beneficial
new-to-old ordering approach [29] of physically materialized version
records with out-of-place update scheme and one-point invalidation
model [18,30] — i.e. predecessor versions remain unchanged on mod-
ification, whereas write-amplification is massively reduced. For il-
lustration purposes, in Fig. 4, a predecessor record (D) requires no
modifications on updates due to replacement by out-of-place successor
version records (C) and (B). Successor version records are augmented
with the current transaction timestamp (e.g. TX𝑈2 and TX𝑈3, which may
become truncated on eviction to secondary storage devices, whenever
no preceding snapshot is active) and are inserted in the most recent
partition in the MV-PBT-Buffer. Thereby, it is possible to maintain mul-
tiple version records in several succeeding partitions (compare example
in Fig. 4 or a single modifiable partition, e.g. as separate record [18]
or in-memory update lists [2,17]. Given the logical search succession in
MV-PBT from new-to-old, e.g. partition traversals from (A) to (B), (A) to
(C) and (A) to (D) in Fig. 4, transaction snapshots identify their visible
version record and skip others, based on the augmented transaction
timestamps. Since record data values are physically materialized in
each version record, identified records are directly applicable.

Record Types in MV-PBT feature all operations over logical tuple life-
cycle without modifying predecessor version records. During lifetime,
it gets created, modified and deleted while it is frequently read.
• Regular Records declare the begin of the life-cycle, hence there is

no predecessor version. Its transaction timestamp is applied by the
inserting transaction and indicates its validation.
4

• Replacement and Anti-Records. Replacement records indicate a new
record value on update. Its timestamp invalidates its predecessor
as well as validates itself. Replacement Records are also applied
on modifications to the record key, however, invalidation requires
an Anti Record with the predecessor key attribute values and the
current transaction timestamp for invalidation. Replacement Records
as well as Anti Records mostly store the predecessor’s value for logical
tuple assignment as needed in non-uniqueness index management
constraints. However, modifications to the key attributes and non-
uniqueness indexing constraints with index-only visibility checks [18]

Fig. 5. Conversion to a (iv) defragmented and dense-packed disk layout and inclusive
(vi) performance of a sequential write of leaves and referring inner nodes with modern
B+-Tree techniques. (1) After atomic partition switch (stage iii), an MV-PBT consists of
(A) persistent, (B) a victim and (C) a most recent partition. Internal nodes and leaves of
the victim partition delay maintenance effort (e.g. split operations) by flexible page size
until a reconciliation process (2.D). The (E) most recent partition consumes ongoing
modifications. Finally, (3) the (F) victim partition is sequentially written to secondary
storage and (G) is the only memory mapped partition.
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allow MV-PBT to serve as sole storage [17] and index management
structure in storage engines.

• Finally, Tombstone Records are inserted on deletion of a logical tuple.
Major difference to Anti Records is, that successor version records are
impossible.

Atomic Partition Switch and sequential write of dense-packed leaves and
referring inner nodes bring a leading edge in MV-PBT. The whole pro-
cedure consists of several partially parallelizable stages (i to vii) [17],
which are outlined in the following. After (i) determination of switch
requirement by a certain dirty buffer threshold in the MV-PBT-Buffer, a
(ii) valuable MV-PBT victim partition is selected for eviction. Contrary to
LSM-Trees, MV-PBT partitions become immutable and switched by (iii)
atomically incrementing the most recent partition number (max_pnr) in
the meta data, since the required B+-Tree structure is already existent
and logged anyways.

However, records are not yet in their final (iv) defragmented and
dense-packed disk layout, since structure modifications are the result
of a randomly inserting workload. One approach to avoid expensive
partition-internal structure modifications (i.e. node merges) for dense-
packing is to simply re-inserting the still valid contents in their final
arrangement by manipulating the partition number in a bulk load
operation [18]. B+-Trees allow efficient split policies to support high
fill factors by this operation. Finally, visibility characteristics of both
partitions are swapped and the randomly grown source partition gets
cropped from the tree. Another approach is to leverage modern B+-Tree
echniques. In order to avoid structure modifications, referenced main
emory nodes are allowed to flexibly grow and finally get divided and

tructured in the disk layout in a reconciliation process (depicted in
ig. 5).

Auxiliary (v) filter structures are generated as a natural by-product
f defragmentation and dense-packing, since records are accessed any-
ays. Whenever (a fraction of) leaf nodes obtained their final layout,

t is possible to (vi) perform a sequential write of leaves and referring
nner nodes by traversing the tree structure and following the sibling
ointers — yielding a bottom-up sequential write of volatile (dirty)
odes, level by level. Finally, the persisted (clean) leaves are (vii) passed
o the regular replacement policy in order to sustain a constant buffer
actor and memory footprint (Fig. 6).

asic Operations in MV-PBT are based on a regular B+-Tree — i.e. they
ave logarithmic complexity. Every modifying operation is treated as
n insertion of a record of a respective type [17,18,27,28]. Thereby, the
urrent transaction timestamp is set for validation in visibility checks

and one-point-invalidation of conceivable predecessors, respectively,
hich can be located in a preceding or the current partition. However,
ue to the partitioned key, each modifying operation is performed in
he most recent partition in main memory. This is also valid in case of
oncurrent partition switch by overwriting the partition number of an
nsertion record key and immediate re-traversal from root. Additional
onstraint support is very uncommon in pure storage management since
ecords are typically overwritten by blind insertions, however, this is
5

acilitated by MV-PBT in preceding equality search operations.
Equality and range search operations perform root-to-leaf traversals
f a (sub-)set of partitions by manipulation of the partition number in
he partitioned search key. Partitions are preselected by auxiliary filter
tructures. Logically, partitions are searched in reverse order from the
ost recent to the lowest numbered one. Based on the selectivity of a

uery, partitions may be sequentially processed or by parallel traversals
n a merge sort operation [17]. In case of equality searches, sequential
rocessing allow minimal read-amplification, contrary, sorted range
earches favorably adopt the merge sort approach, whereby multiple
ursors are applied and get individually moved and returned to a higher
evel merge sort cursor. Thereby, record transaction timestamps are
hecked for visibility to a transaction snapshot. Based on a regular visi-
ility check, invisible and invalidated records are skipped, invalidating
ecords are remembered for exclusion of occurring predecessors (which
re subsequently accessed) and matching records are returned [18].

. Cached Partition: Stop Re-Writing valid Data

MV-PBT introduces a logical horizontal partitioning within one
ingle tree structure in order to leverage characteristics of secondary
torage devices [17,27–29]. This data fragmentation influences the
earch operations in different ways. Obviously, several possible storage
ocations of a requested record implies additional search effort. Actu-
lly regular B+-Trees incur increased search costs in randomly grown
tructures, due to diminishing cache efficiency of partially filled inner
odes. Contrary, LSM-Trees keep a read-optimized layout within each
omponent, however, multiple entry points and referenced inner nodes
re neither commonly cached nor leverage logarithmic capacity [18,
9]. LSM-Trees counteracting increased search effort with background
erge operations, whereby write-amplification of still valid data is

ncreased [17].
MV-PBT preserves a read-optimized and cache-efficient layout for

mmutable nodes (Fig. 1.B) with one commonly shared entry point
nd referenced inner nodes (Fig. 1.A) which are subjecting to an
ptimal fill factor, since append-based behavior of referenced data
llows efficient split policies (equal to bulk loads). As outlined in
ection 3 (Atomic Partition Switch and sequential write), mutable inner
odes and leaves (Fig. 1.C and 1.D) are a hot fraction which sustains
aintenance operations of the random workload, however, modern B+-
ree techniques allow main memory efficient delay of maintenance
perations. Since the small fraction of inner nodes is commonly used,
hey are well cached, so that a large portion of the parallel traversal
perations is performed without read latencies from secondary storage
evices. Successive read I/O in multiple partitions leverage parallelism
n flash persistent storage. Moreover, search performance in MV-PBT
elies on data skipping by auxiliary filter structures. As a combined
esult, MV-PBT is able to sustain comparable search performance for
igher fragmentation as in LSM-Trees [17].

However, variety of auxiliary filter structures imply caching and
robe costs as well as massive amount of traversal operations result
n high read I/O costs and shrink performance due to growing frag-
entation. Instead of adversely re-writing still valid data records in
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a consolidated arrangement, due to asymmetry of flash and write-
amplification, MV-PBT introduces Cached Partitions [17]. They are an
nternal index partition, whose records reference a preceding partition,
ontaining the latest version record of a logical tuple in a lexicograph-
cal sort order. Several Cached Partitions may exist for a different
ubset of small partitions and are cyclically created while the MV-
BT evolves. Cached Partitions are the result of a background merge
ort of contents in several immutable lower numbered partitions with
he respective partition number as value or the contents of several
receding Cached Partitions. Background merge sort results are bulk
nserted in an ‘invisible’ partition while proceeding, can be paused and
ontinue without wasting work and become finally visible by an atomic
tatus switch.

Since a subset of partitions is fully indexed in a Cached Partition,
subsequent search operation is able to traverse the subset on the

ommonly cached path as needed, based on the results of the internal
artition index. Cached Partitions assume responsibilities of auxiliary
ilter structures and allow to exclude the subset of indexed partitions
rom the regular logical search succession, whereby comparison costs
n an internal merge sort are reduced — the effort is focused on non-
ndexed and Cached Partitions. Furthermore, cached index records are
ery space and cache efficient in the search process, since they consist
f the key and one partition number (e.g. 2 or 4-byte integer) in a
ense-packed arrangement.

. Garbage Collection and Space Reclamation

Datasets and tuple values evolve over time. Storage management
tructures with out-of-place update approaches allow beneficial sequen-
ial write patterns and low write-amplification, however, invalidated
redecessor record versions remain existent on update. Search opera-
ions are able to exclude invalid version records from the result set,
hough visibility checking entail additional processing. Furthermore,
ersion records which are not visible to any active transaction snapshot
ntail space-amplification and additional storage costs.

In MV-PBT, additional search costs due to fragmentation by hori-
ontal partitioning is well covered by Cached Partitions for insertion
f new tuple version records. However, modifications to logical tuple
alues leave persisted obsolete version records behind, yielding space-
mplification [17]. Ideally, obsolete version records are discarded as
art of the dense-packing phase on partition switch, however, many
ersion records become invalidated after they were persisted. For the
nly reason of space reclamation, MV-PBT occasionally performs a
arbage collection (GC) process. Similar to the creation of a Cached
artition, GC is performed by a background merge sort and bulk load
peration in a not yet visible partition. Certainly, the stored record
alue is the regular value of the most recent record version of a tuple.
s well, the GC process can throttle and continue without wasting
ork, since the partition is not yet accessible for querying. After the

uccessful completion, the partition becomes visible and the records
f purified preceding partitions become invalidated. Once every active
earch operation finished, the purified partitions are cropped from the
ree structure by an efficient range truncation [2].

. Implications on Secondary Indexing MV-PBT

Storage management with a key-searchable structure like MV-PBT
acilitates additional purposes in K/V-Stores. Primary key indexing on
uple records is feasible without the effort of auxiliary access path main-
enance. More to the point, K/V-storage engines (like MyRocks [31] or
ongoRocks [32] to name but a few) necessitate support for secondary

ndices [31,32]. However, efficient searches and scans on various tuple
ttributes require additional secondary index structures — preferably
quipped with index-only visibility checks for optimal selectivity in
ulti-version scenarios and minimal write-amplification maintenance
6

osts [18].
Logical Referencing of Version Records. MV-PBT as storage management
structure maintains modifications to the dataset by insertions of fully
materialized version records in the most recent partition in main mem-
ory [17]. Storage locations of these version records are temporarily
volatile until a defragmented and dense-packed disk layout is established
in a victim partition, due to native B+-Tree ordering capabilities in

odifiable partitions. Finally, each version record is addressable by
hysical referencing with page and slot numbers. Nevertheless, since
econdary indexes directly reference all records in the entire dataset,
hysical referencing is neither feasible without additional effort nor
ecessary especially whenever modifications are performed in the main
tore.

MV-PBT exhibits constant search performance for each version
ecord by a single traversal operation, since its partition number stays
nchanged. Logical referencing is a sustainable solution for secondary
ndexing. Index records are formed by search key attribute values and
record value, which references a version record in the MV-PBT stor-

ge management structure by its entire search key. Version-oblivious
econdary indexes do not gain benefit from specific version record
eys and preferably reference logical tuples (without partition number),
herefore a regular search operation is performed in the MV-PBT

torage management structure. On the contrary, version-aware secondary
ndexes reference version records (including the partition number).

ndex-Only Visibility Checks. MV-PBT storage management structures
re accessed by various additional access paths with logical refer-
nce. Nevertheless, arbitrary index approaches are not always able
o identify version records of logical tuples, which are visible to a
ransaction snapshot. Hence, a regular search succession with visibility
heck in the main store is required from new-to-old, which might
ause traversal operations in several partitions for each index record
hat matches the search predicates. These costs limit the benefit of
econdary indexes [18].

MV-PBT natively enables index-only visibility checks for additional
ccess paths [18]. Different record types are augmented with timestamp
nformation and a logical reference to its related version record in
he main store in a space- and cache-efficient way. A more expensive
egular visibility check and search succession in the MV-PBT main store
s avoided by a lateral entry and traversal of the related partition as
equired.

xample Secondary Indexing MV-PBT. In Fig. 7, a MV-PBT storage
anagement structure (MV-PBT Store) manages tuples with a key
e.g. ‘12’) and several large attribute values (e.g. ‘Maya; 20; 8;...’). A
econdary index is maintained on attribute number 3 by an ordinary
ersion-oblivious B+-Tree and alternatively a version-aware MV-PBT
ndex. Modifying transactions insert (TX𝑈1) and update (TX𝑈2 and
TX𝑈3) a logical tuple by the creation of version records (Regular Record
(D), Replacement Records (C) and (B)). The B+-Tree secondary index
maintains index records (Y) and (Z), since attribute number 3 changes
in (B). According to [18] and Section 3 (Record Types in MV-PBT and
Basic Operations), modifying operations in a MV-PBT secondary index
result in a Regular Record (5) and Replacement Record (4) in Partition
0 and another Replacement (3) and Anti Record (2) in Partition 1, due
o possible interim partition switch process.

Reading transaction (TX𝑅1,TX𝑅2,TX𝑅3) started when modifying
ransactions (TX𝑈1,TX𝑈2,TX𝑈3) have respectively committed, hence

snapshot related version records vary. Only TX𝑅1 is expected to return
(D) {Maya;29}, whilst result sets of other transactions are empty.

Version-oblivious B+-Tree secondary indexes are traversed from (X)
to (Y) or (X) to (Z), based on the search predicates. Either way, a
reference to the logical tuple with the unique search key attribute value
12 is gathered and a regular search operation is performed in the MV-
PBT Store. Traversal operations and visibility checks are successively
performed for each partition and matching version record, until the
search algorithm breaks. For transaction TX𝑅1 3 traversal operations
from (A) to (B), (A) to (C) and (A) to (D) are necessary, however, only
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Fig. 7. Index-only visibility checks in secondary indices avoid unnecessary traversal operations in MV-PBT stores.
t
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(D) is related to its snapshot and added to the result set. TX𝑅2 breaks
at (C) after 2 traversals and TX𝑅3 at (B) after 1 traversal with an empty
result respectively, due to mismatching search predicates. As a worst-
case scenario, an insertion operation aborts and leave unrelated ghost
records in the secondary index behind, but remove obsolete version
records in the MV-PBT Store by garbage collection. As a result, every
partition is traversed and searched.

Version-aware MV-PBT secondary indexes perform index-only visi-
bility checks. Therefore, only logical references of version records are
returned (partition number and search key), which are related to the
snapshot of the calling transaction. In the case of TX𝑅1 (Fig. 7), the
traversal begins from (1) to (2), however, the processed record is not
related to the transaction snapshot. Hence, it is traversed from (1) to
(4) (unrelated) and searched up to (5). The augmented transaction
timestamp is related to the transaction snapshot and its reference was
not invalidated by a visible index record. Hence, the MV-PBT Store is
traversed from (A) to (D) by a lateral entry and the version record
is added to the result set. For TX𝑅2, the secondary index is traversed
from (1) to (3), which is unrelated to the transaction snapshot and no
further record is found. Accordingly, for TX𝑅3, it is traversed from (1)
to (2). The Anti Record is related to the transaction snapshot, whereby
the visible Replacement Record (4) is invalidated and skipped. In both
cases, the MV-PBT Store is not accessed. Moreover, potential ghost
records in the MV-PBT secondary index are processed by the index-only
visibility check and are unrelated to transaction snapshots. Selectivity
is considered and typically more expensive operations in the main store
are avoided.

The capability of inherent index-only visibility checking enable MV-PBT
to serve as sole storage and index management structure with robust and
constant access latencies, which are independent of the number of version
records in a logical tuple’s version chain [18].
7

i

7. Time-Travel Capabilities enabled by Multi-Version Storage

Modifications to the dataset in MV-PBT storage management struc-
tures yield insertions of new version records related to a logical tuple.
Version records of different types are augmented with timestamp in-
formation for (in-) validation in order to perform an (index-only)
visibility check in storage engines with MVCC and snapshot isolation.
By this means, MV-PBT combines high parallelism of mutually non-
blocking MVCC transaction management schemes with the benefits in
append-based out-of-place storage and index management with low
write-amplification. Considering recent trends in workload evolution,
version chains of logical tuples tend to comprise multiple version
records, which are relevant to different transaction snapshots of concur-
rently executing transactions. For instance, MV-PBT enables constant
access latencies and robust performance in HTAP workloads [18] for
arbitrary version records close as well as far of the entry point of a
version chain.

Arbitrary Time-Travel Querying. MV-PBT inherently retains the entire
history of each logical tuple, since modifications are maintained by
the out-of-place insertion of a new version record. Garbage collection
approaches are the only way to remove obsolete version records in
the background, however, with time-travel these will never become
obsolete for committed transaction timestamps. Time-travel queries on
historical data perform robustly [18], since recently appended parti-
tions are simply skipped by auxiliary filters, i.e. if a partition’s minimum
ransaction timestamp logically succeeds a transaction snapshot, its
omprised data cannot be related and is skipped by the search algo-
ithm. Nevertheless, modifying workloads and scans potentially suffer
rom increasing fragmentation by caching and processing of intermin-
led unrelated version records in ancient partitions. Flexible strategies

n creation of Cached Partitions might lessen these effects.
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Fig. 8. Experiments 1 and 2 evaluate the structural properties of MV-PBT.
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pplication of Named Snapshots. In enterprise applications, it is mostly
ufficient to provide specific points in historical data, e.g. in a daily
r monthly reporting interval. User-defined Named Snapshots [2] are

a possibility to sustain a consistent searchable historical snapshot of
the dataset. Intermediate version records become obsolete and get
removed by GC, whenever they are unrelated to any active transaction
snapshot or maintained Named Snapshot. By this means, the number of
unrelated version records is reduced and overall transactional through-
put is increased. Moreover, MV-PBT could be instrumented to create
optimized Cached Partitions or perform GC, based on the fragmentation
and necessary write-amplification.

Out-of-place maintenance of timestamped version records in par-
titions makes MV-PBT a leading edge compared to its competitors in
time-travel query processing. Whilst B+-Tree is limited by intermingled
version records and massive write-amplification, LSM-Tree additionally
suffers from limited Named Snapshot support, due to necessary complex
merge policies.

8. Experimental Evaluation

We present the analysis of MV-PBT as storage management struc-
ture in comparison beside the baselines LSM-Trees and B+-Trees fully
integrated in WiredTiger 10.0.1 (WT) [2]. LSM-Trees in WT build
upon components of the provided B+-Trees upon which MV-PBT is also
implemented. A good comparability is achieved, since all structures
commonly operate on equal code lines and B+-Tree techniques, e.g.:
prefix truncation, suffix truncation and snappy compression; reduced
maintenance effort due to flexible page sizes; main memory page
representation with sorted areas, update lists and insertion skiplists;
MVCC transaction timestamps in main memory record representation;
tree-based buffer management.
8

(

Experimental Setup. We deployed WiredTiger(WT) 10.0.1 and WT with
MV-PBT as storage management structure on an Ubuntu 16.04.4 LTS
server1 with an eight core Intel(R) Xeon(R) E5-1620 CPU, 2 GB RAM
nd an Intel DC P3600 enterprise SSD. Applied parameter configura-
ions constitute an economic setup for modern workload properties,
.e. huge dataset sizes with comparably low main memory volumes
essen caching effectiveness and generally yield disk-based access pat-
erns (compare [33,34]). We used the YCSB framework [35,36] for
xperimental evaluation with a dataset size of approx. 50 GB, unless
tated otherwise. The WT cache size is set to 100 MB and LSM-chunks
s well as partitions are allowed to grow up to 20 MB in order to
rovide comparable results and enabling sufficient general cache for
requently accessed and traversed inner B+-Tree nodes. Direct IO is
nabled and the OS page cache is cleaned every second in order to
nsure repeatable, reliable and even conservative results.

xperiment 1: Space and Write-Amplification. In Fig. 8(a), B+-Tree, LSM-
ree (merges are disabled for comparability) and MV-PBT are initially
ulk loaded with 100 million records (key and value size are 13 and 16
ytes respectively). Prefix truncation in record keys, suffix truncation
n separator keys and snappy compression allow comparable relative
pace requirements for all approaches. There is a clear evidence of
he synergy between prefix truncation and partitioned key, since the
nlarged record key by a 2 byte partition number does not result in
igher space requirements. Subsequently, 5 million new records are
nserted — yielding approx. 60 new partitions/LSM-components. Due

1 It is a matured version of Ubuntu to the beginning of our research. The
perable system allows comparable results in a homogeneous environment
e.g. [17,18,27,28]).
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to compression techniques, the additional relative space requirement is
lower than the actually added record size, with slight advantages for
MV-PBT. B+-Tree suffer from insertions in the read-optimized layout
due to node splits — yielding massive relative space-amplification per
newly inserted records.

Insight: MV-PBT offers the lowest space-amplification, that is be-
tween 12% and 31× better. Finally, the write-amplification (Fig. 8(a))
is evaluated after 5 million inserts. Since almost each insertion causes
escalating node splits in the read-optimized layout of a B+-Tree, each
insertion causes 2.76 write I/Os of half filled nodes. Sequential writes of
dense-packed nodes allow LSM-Trees and MV-PBT to achieve singular
writes of optimally filled nodes, yielding much less write I/O per
insertion. MV-PBT achieves a better factor due to commonly used inner
nodes. Moreover, merge operations of LSM components would cause a
downturn of write-amplification by orders of magnitude.

Insight: Compared to LSM-trees, MV-PBT offers 30% less write-
amplification and is up to 300× better than B-Trees.

Experiment 2: Sequential Write Pattern. Evictions of dirty buffers from
main memory cause write I/O operations to secondary storage devices,
which are preferably performed in a sequential pattern, especially with
Flash-SSDs, to achieve better performance and longevity. Logical Block
Addressing (LBA) enables a logical sequential arrangement of physical
storage units in SSDs, hence write I/Os to a sequence of LBAs over
time indicate a beneficial sequential write pattern. Fig. 8(b) depicts the
desired write pattern for MV-PBT with LBAs on the ordinate and evolv-
9

ing time on the abscissa. As a result of the partition switch operation,
delayed maintenance operations (splits) on leaves followed by inner
nodes are performed in a reconciliation operation. Afterwards, leaves
are identified by a tree walk and ascendingly written to secondary
storage devices, depicted by the continuously ascending markers. Fi-
nally, the referencing levels of immutable inner nodes are sequentially
written, depicted by multiple shorter continuously ascending markers.

Insight: MV-PBT is able to perform advantageous sequential writes.

Experiment 3: Steady Performance by Cached Partitions and Garbage Col-
lection. The write-heavy YCSB Workload A consists of 50% updates and
reads, respectively (depicted in Fig. 9(a)). Write-amplification in B+-
Trees yield poor performance characteristics (7M tx). Sequential writes
and low write-amplification in base MV-PBT (no Cached Partition and
GC) allow much higher transactional throughput, however, increasing
search effort degenerates performance (44M tx), whereby LSM-Trees
hold search effort down by merges (74M tx).

Insight: The direct structural comparison of LSM-Trees and MV-PBT
is without merges and garbage collection, whereby MV-PBT outper-
forms LSM (11M tx) by 4×. Enabling Cached Partitions allow MV-PBT
increased read efficiency, however, memory footprint of auxiliary fil-
ter structures degenerates its capabilities over time due to effectively
reduced cache (94M tx).

Insight: Occasional Garbage Collection in MV-PBT (every 400 Par-
titions) enables stable performance characteristics (151M tx), outper-

forming LSM-Trees by 2×.
Fig. 9. Experiments 3 and 4 evaluate consistent performance of MV-PBT.
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Experiment 4: Read-Only Performance Characteristics of intermediate Struc-
tures States. YCSB Workload C is performed several times after insert-
ing 500k small random records for 10 min, respectively (depicted in
Fig. 9(b)). B+-Tree remain very stable, but slightly decrease, since the
read-optimized layout breaks. LSM-Trees throughput is varying based
on the number of LSM components.

Insight: Commonly cached inner nodes and periodically created
Cached Partitions allow MV-PBT to retain comparable read perfor-
mance even if 80 partitions are created after 10 million random in-
sertions.

Experiment 5: Impact of Different Value Sizes. YCSB basic workloads
(Fig. 10) are performed on small (16 bytes), medium (100 bytes) and
10
large (1000 bytes) value sizes, the initial load has been adjusted to
match approx. 50 GB dataset size.

Insight: MV-PBT outperforms its competitors in the high and
medium update intensive workloads A and B, even the LSM-Tree by
2× in the workload A. The read-only workload C is performed on the
read-optimized layout after load phase — comparable results prove
negligible costs of partitioned key comparisons, whereas LSM-Trees are
only able to retain performance for one component (Figs. 10(c) and
9(b)). Workload D searches for few concurrently inserted records. B+-
Tree benefits from well cached nodes in the traversal path due to the
recent insertion. This is also valid for MV-PBT and LSM-Trees, however,
concurrent insertions are not in the MVCC snapshot and cause search
operations in other partitions or components, which is 2× faster in
MV-PBT. Finally, MV-PBT is able to achieve comparable performance
Fig. 10. Experiment 5 evaluates performance for different value sizes.
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to B+-Tree in the mostly scan workload E. Cached Partitions and
commonly cached inner nodes enable cheap merge sort scan operations.

Experimental Setup for subsequent Time-Travel Experiments 6 and 7. The
/V-Store is initially loaded with approx. 120GB of 1KB key/value
airs and a Named Snapshot is created. The WT cache size is set to
00 MB (including 40 MB partition/chunk buffer). YCSB Workload E
95% scan, 5% insert) is performed in order to simulate background
/O and occupying bandwidth. 10𝑘/100𝑘 (0.01%/0.1%) of initially

loaded tuples are randomly selected and updated step-wise (52× in
otal). Meanwhile, whenever every second update process completes,
he update stream is paused and time-travel queries are performed on
he Named Snapshot for all initially selected tuples and the total latency
s measured.

xperiment 6: Robust Latencies in MV-PBT on History Data. In Fig. 11,
ime-travel query latencies (10𝑘 single operations) are depicted for dif-
erent version chain lengths. MV-PBT (w/o timestamp (TS) filtering per
artition)’s (brighter blue square) latency successively downgrades, as
ersion chain length increase by inserted version records with updated
alues. Modifying operations increase fragmentation, since up to 20
artitions are created over time, in order to absorb updates. The search
lgorithm proceeds and traverses every partition from the most recent
o the lowest numbered one. Neither applied bloom filters on search
ey attribute values nor Cached Partitions prevent partitions from being
ccessed. However, these partitions do not contain any version record,
hich is related to the time-travel query.

A second effect can be identified. Modifying workloads leave messy
age contents behind for leaves as well as inner nodes due to mod-
rn lock-free B+-Tree techniques, e.g. update lists or insert skiplists.
ime-travel queries are harmed by current workload. WT restores a
ead-optimized disk layout on a reconciliation process, hence parti-
ion switch processes incidentally improve read performance, what is
mposingly demonstrated in excerpts at 2, 6, 24, 38 or 48 successor
ersions.

MV-PBT (min. TX TS) (darker blue diamond in Fig. 11) overcomes
hese issues by space-efficient auxiliary filter structures on transaction
imestamps. One minimum transaction timestamp per partition is suffi-
ient due to MV-PBT’s append-based horizontal partition management.

time-travel query is performed on a valid transaction snapshot (in
his case an initially created snapshot), hence it is sufficient to search
nd traverse partitions that already existed at the transaction snapshot.
ubsequently created higher numbered partitions are skipped, when-
ver the partition’s minimum transaction timestamp logically succeeds
11
he transaction snapshot. Moreover, minimum transaction timestamps
ffectively avoid interferences with modifying workloads, whenever
ommonly used inner nodes sustain read-optimized disk layout (>= 10
uccessor versions). As a result, MV-PBT exhibits robust and up to 35%
ower latencies in time-travel query processing.

xperiment 7: Time-Travel Capabilities in Storage Management Structures.
n Fig. 12, time-travel query latencies are depicted for different number
f updates (X-axis) and modified data share (Figs. 12(a) and 12(b)).
SM-Trees as well as B+-Trees remove intermediate version records by
ifferent garbage collection techniques. Moreover, LSM-Trees do not
upport Named Snapshots, whereas it is instructed to return the lowest
imestamped and available version record. By this means, time-travel
apabilities are simulated, even though returned version records and
ersion chain lengths vary. Only MV-PBT maintains every version record
n this configuration, since version support and performance of others is
imited.

B+-Trees intermingle modifying workload and history snapshot
ata, since they maintain a strict lexicographical sort order. The version
hain length is at most 3 and modifications are paused, however, the
ead-optimized layout is broken and the secondary storage device’s
andwidth is occupied by insertions and scans of YCSB Workload E in
he background. B+-Trees perform an order of magnitude worse than
heir competitors and are not suitable for time-travel query processing.

LSM-Tree’s latencies vary depending on the number of version
ecords according to the number of LSM components. Meanwhile, LSM-
rees are able to minimize searchable components in a read-optimized

ayout. Moreover, insertions of YCSB Workload E in the background are
ell buffered in the main memory component. Nevertheless, occasion-
lly occurring better performance compared to MV-PBT is explained
ith the lack of appropriate time-travel capabilities. That is, at these
oints the LSM-trees have less than the specified number of versions
ue to background compactions.

MV-PBT exhibits robust time-travel query latencies. Insertions of
CSB workload E are well absorbed by the most recent partition, whilst
inimum transaction timestamps protect appended partitions. More-

ver, every intermediate version record is contained, until comprising
artitions are explicitly dropped by user-intended garbage collection
rocesses, i.e. MV-PBT retains the entire tuple history. Arbitrary trans-
ction snapshots are available for query processing. Finally, time-travel
uery processing latencies are reduced by 20% in average, compared
o varying LSM-Trees.
Fig. 11. MV-PBT exhibits robust Time-Travel Query Performance, due to minimum timestamp filtering per MV-PBT partition (min. TX TS).
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. Conclusion

In this paper we present Multi-Version Partitioned BTrees (MV-PBT)
s a sole storage and index management structure [18] in KV-storage
ngines. Logical horizontal partitioning yields beneficial appends of
ersion records within a single tree structure. Partitions leverage prop-
rties of B+-Trees by common utilization and caching of inner nodes
n traversal operations, whereby constant search performance and high
ragmentation are brought together. This behavior leveraged by Cached
artition in order to minimize write-amplification to secondary storage
evices. Contrary to LSM-Trees, merging is considered for garbage
ollection of obsolete version records instead of sustained search per-
ormance. Therefore, MV-PBT enables robust latencies in arbitrary
ime-travel query processing. Finally, (index-only) visibility checks en-
ble reliable result sets in appropriate storage and index management
tructures without the need of expensive downstream visibility checks,
herefore MV-PBT is predestinated to be applied in KV-storage engines.
12
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